
Improved Implicit-Deadline Elastic Scheduling
Marion Sudvarg

Washington University in St. Louis
msudvarg@wustl.edu

Chris Gill
Washington University in St. Louis

cdgill@wustl.edu

Sanjoy Baruah
Washington University in St. Louis

baruah@wustl.edu

Abstract—Elastic scheduling provides a framework under
which the utilizations of recurrent tasks are reduced by increasing
their periods in response to system overload. First proposed by
Buttazzo et al. in 1998 for uniprocessor scheduling of implicit-
deadline tasks, elastic scheduling was extended to multiprocessor
scheduling algorithms by Orr and Baruah in 2019. In this paper,
we propose and analyze improvements to elastic scheduling of
implicit-deadline tasks. (i) We evaluate a new algorithm that
we proposed as a short note in the Real-Time Systems journal,
and demonstrate that it allows for faster admission control than
Buttazzo’s algorithm when applied to uniprocessor and fluid
scheduling. (ii) We propose and analyze faster elastic scheduling
algorithms for partitioned EDF scheduling. (iii) We provide an
exact algorithm for elastic scheduling under global EDF.

Index Terms—real-time systems, elastic scheduling

I. INTRODUCTION

Elastic real-time scheduling models provide a framework for
dynamic task adaptation to guarantee schedulability even on a
system that becomes overloaded. First proposed by Buttazzo
et al. [1], [2], elastic scheduling allows tasks to reduce (“com-
press”) their utilizations, typically by increasing their periods.
Each task has a maximum utilization, representing the desired
service level at which it nominally executes given sufficient
computational resources. Each adaptable or “elastic” task is
also assigned an elastic parameter representing its relative
adaptability (e.g., based on its importance). If the system
becomes overloaded, elastic task utilizations are reduced pro-
portionally to their elasticities until schedulable. Each task is
also assigned a minimum utilization representing the minimum
service necessary to maintain correct or safe execution below
which its utilization can no longer be compressed.

While elastic scheduling models are therefore useful for
adjusting a predefined set of tasks for execution on a resource-
constrained system, Buttazzo’s original elastic scheduling
model was primarily intended to enable online adaptation in
dynamic and open systems, e.g., in response to admission of
new tasks or changes in available computational resources [1],
[2]. Therefore, it is important for elastic scheduling algorithms
to be efficient (i.e., provide bounded-time complexity guaran-
tees) for online execution while preserving quality of service
to the extent possible (i.e., tasks should be compressed only
as much as needed to maintain schedulability).

With these two concerns in mind, this paper aims to analyze
and improve upon existing approaches to elastic scheduling for
sets of implicit-deadline tasks scheduled on both uniprocessor
and multiprocessor systems. Prior algorithms can be classified
into two categories. For scheduling algorithms with a utiliza-
tion bound, a quadratic-time algorithm proposed by Buttazzo
et al. [1], [2] for uniprocessor elastic scheduling finds an exact

NSF grants CPS-2229290 and CNS-2141256 and Washington University
seed grant CC0001285 (PJ000030737) supported this work.

solution; this same algorithm was applied to multiprocessor
fluid scheduling by Orr and Baruah [3]. For multiprocessor
scheduling algorithms where analysis does not simply check
total utilization (e.g., global EDF and partitioned EDF), Orr
and Baruah proposed to iteratively increase the “amount”
of utilization compression applied to the task system. At
each level of compression, if the system is determined to be
schedulable, the algorithm terminates; otherwise, compression
is increased. Such algorithms are tunable in their precision:
a smaller increase in compression at each iteration allows a
more precise result, but increases the algorithm’s running time.

Three key insights can be leveraged to improve these
algorithms. First, an exact solution under a utilization
bound can be obtained in quasilinear time, or in linear
time for admission control or changes in utilization bound.
We presented such an algorithm in a short note published in
the Real-Time Systems journal [4]. In §III, we evaluate its
performance in comparison to Buttazzo’s original quadratic-
time algorithm and discuss its advantages. In §IV, we also
propose an application to partitioned EDF scheduling, for
which partitioning heuristics provide an (albeit pessimistic)
utilization bound, then evaluate the speedups gained versus
pessimism in the amount of compression applied.

Second, for the inexact algorithms, an amount of compres-
sion can be found by binary, rather than linear search.
Compression is lower-bounded by 0 and upper-bounded by
the amount that takes all tasks to their minimum utilizations.
By binary searching in this range, §IV demonstrates that we
can find a result more quickly (compared to linear search) for
partitioned EDF scheduling.

Third, in §V we propose a new exact algorithm for elastic
scheduling under global EDF. Rather than searching for
an amount of compression with tunable precision, an exact
solution can be obtained in time quadratic on the number of
tasks by modifying our algorithm in [4].

II. BACKGROUND

A. Elastic Scheduling with Utilization Bounds

The elastic model for implicit-deadline tasks [1], [2] char-
acterizes each task τi=(Ci, U

min
i , Umax

i , Ui, Ei) by five non-
negative parameters. Ci is the task’s worst-case execution
time. Umax

i is its maximum utilization when executing at the
desired service level in an uncompressed state. Umin

i is its
minimum utilization, i.e., a bound on the amount its service
can degrade. Ui is the task’s assigned utilization, constrained
by Umin

i ≤ Ui ≤ Umax
i . Ei is an elastic constant, representing

“the flexibility of the task to vary its utilization” [1].
Under the original model proposed by Buttazzo et al. [1],

[2], elastic scheduling was applied to uniprocessor scheduling
algorithms with utilization bounds, e.g., EDF with its bound of



1, or rate-monotonic (RM) scheduling under Liu and Layland’s
bound [5]. It was since extended by Orr and Baruah [3] to
multiprocessor fluid scheduling [6] where the utilization bound
is equal to the number m of processors. Under these models,
a task system Γ = {τ1, . . . , τn} has a total uncompressed
utilization Umax

SUM =
∑n

i=1 U
max
i and a desired utilization UD

representing the utilization bound allowed by the scheduling
algorithm in use. In the event of system overload, i.e., if
Umax

SUM > UD, the model assigns a utilization Ui to each elastic
task τi such that (i)

∑
i Ui = UD, i.e., total utilization equals

the bound; and (ii) if Ui > Umin
i and Uj > Umin

j , then Ui and
Uj must satisfy the relationship:(

Umax
i − Ui

Ei

)
=

(
Umax
j − Uj

Ej

)
(1)

A task system Γ for which such Ui exist for all tasks is said to
be feasible. Compression is realized by adjusting each task’s
period Ti according to its new utilization, i.e., Ti = Ci/Ui.
Buttazzo’s Algorithm: Let Γ denote a feasible task system with
Ei > 0 for all tasks τi ∈ Γ, and consider the Ui values that
satisfy the above conditions. The tasks in Γ may be partitioned
into two classes — ΓVAR (those tasks for which Ui > Umin

i ,
so their utilizations can be compressed further if necessary)
and ΓFIX (those for which Ui = Umin

i ; i.e., their utilizations
are now fixed). It has been shown [1, Eqn. 8] that for each
τi ∈ ΓVAR, the utilization Ui takes the value

Ui = Umax
i −

(
USUM − (UD −∆)

ESUM

)
× Ei (2)

where USUM =
∑

τi∈ΓVAR
Umax
i , ESUM =

∑
τi∈ΓVAR

Ei, and
∆ =

∑
τi∈ΓFIX

Umin
i . Given a set of elastic tasks Γ, the

algorithm of [1, Figure 3] starts out computing Ui values
for the tasks assuming that they are all in ΓVAR — i.e., their
Ui values are computed according to Eqn. 2. If any Ui so
computed is observed to be smaller than the corresponding
Umin
i then 1 that task is moved from ΓVAR to ΓFIX; 2

the values of USUM, ESUM, and ∆ are updated to reflect this
transfer; and 3 Ui values are recomputed for all the tasks.

The process terminates if no computed Ui value is observed
to be smaller than the corresponding Umin

i . It is easily seen that
one such iteration (i.e., computing Ui values for all the tasks)
takes O(n) time. Since an iteration is followed by another
only if some task is moved from ΓVAR to ΓFIX and there are n
tasks, the number of iterations is bounded from above by n.
The overall running time for the algorithm is therefore O(n2).
Our Improved Algorithm: In a short note in the Real-Time
Systems journal [4], we presented an algorithm that provides
better guarantees on running time in terms of computational
complexity. We defined an attribute ϕi for each elastic task τi:

ϕi
def
=

(
Umax
i − Umin

i

Ei

)
(3)

We proved in [4, Theorem 1] that in Buttazzo’s algorithm
of [1, Figure 3], tasks may be “moved” from ΓVAR to ΓFIX

in order of their ϕi parameters. Assuming that the tasks are
indexed such that ϕi ≤ ϕi+1 for all i, 1 ≤ i < n, one can

simply make a single pass through all the tasks from τ1 to
τn, identifying, and computing Ui values for, all the ones in
ΓFIX before any of the ones in ΓVAR. This can all be done in a
single pass in O(n) time with the procedure in [4, Algorithm
1]. The cost of sorting the tasks in order to arrange them
according to non-increasing ϕi parameters is O(n log n), and
hence dominates the overall run-time complexity. Determining
feasibility and computing the Ui parameters can therefore be
done in O(n log n) +O(n) = O(n log n) time.

Admission control — determining whether it is safe to
add a new task and recomputing all the Ui parameters if so
— requires that the new task be inserted at the appropriate
location in the already sorted list of preëxisting tasks. This
can be achieved in O(log n) time by implementing the list
as a sorted iteratable data structure. Once this is done, the
Ui values can be recomputed in O(n) time by the same
algorithm. Similarly, removing a task from the system and
recomputing the Ui values also takes O(n) time. Furthermore,
if UD changes — e.g., in response to changes in available
utilization due to dynamic resource reallocation — the sorted
list of tasks and their parameters do not change, and so the
Ui values can be updated in linear time.

Though we proved better asymptotic time complexity in [4],
we did not evaluate the algorithm’s performance for realistic
task sets. In §III, we perform this evaluation and extend the
algorithm to fluid scheduling.

B. Scheduling Without a Utilization Bound

In addition to fluid scheduling, in [3], Orr and Baruah also
extended elastic models to multiprocessor scheduling with
partitioned EDF and global EDF. Each of these algorithms
involves schedulability analysis that is more involved than sim-
ply checking total utilization against a bound that is constant in
the number of tasks. To deal with this, they observed that the
degree by which compression is applied to a task system can
be quantified by the relationship in Eqn. 1. In doing so, they
introduce a term λ that is representative of this relationship,
and express the utilization Ui of each task τi as:

Ui(λ)
def
= max

(
Umax
i − λEi, U

min
i

)
(4)

The value of λ beyond which the utilization Ui of task τi
takes its minimum value Umin

i can therefore be derived as:

Umin
i = Umax

i − λEi → λ =

(
Umax
i − Umin

i

Ei

)
which is equal to the value ϕi in Eqn. 3. As such, we may
hereafter refer to ϕi interchangeably as λmax

i . For a complete
set of tasks Γ we also denote the maximum compression that
may be applied to the task system as:

λmax def
= max

τi
(λmax

i ) (5)

The problem of elastic scheduling under Buttazzo’s
model [1], [2] can therefore be reduced to the problem of
finding the minimum value of λ for which a set of tasks are
schedulable. For partitioned EDF, global EDF, and algorithm



PriD, Orr and Baruah propose an approximate search tech-
nique that iterates over values of λ in the interval [0, λmax]
with some “granularity” ϵ. For each value of λ, they assess
schedulability, terminating the search once the compressed
task system is deemed schedulable.

Partitioned EDF: Under partitioned EDF scheduling, each
task is assigned to a single processor core, though each core
may be assigned multiple tasks. On an individual core, jobs
are prioritized according to their absolute deadlines — in
other words, each core schedules its tasks in an EDF manner
independently of the other cores. The problem of deciding
whether a set of tasks are schedulable on m cores under
partitioned EDF can be stated as follows:

Given a set Γ of n tasks τi, each having utilization Ui,
is there a partition of tasks into m sets such that the
sum of utilizations in any set does not exceed 1?

This is equivalent to the bin-packing problem, and is therefore
NP-hard in the strong sense. Nonetheless, there exist heuristic
algorithms to solve bin-packing problems, and Lopez et al.
have compared several in the context of partitioned EDF
scheduling [7]. For each value of λ tested, Orr and Baruah
employ the first fit, worst fit, and best fit heuristics, with tasks
τi considered in order of decreasing utilization Ui(λ). If any
one heuristic deems feasibility, the algorithm terminates.

For n tasks on m cores, sorting tasks and partitioning them
with each heuristic takes at most Θ(n log n+ n ·m) time.
As this must be performed for each tested value of λ — of
which there are up to

(⌊
λmax

ϵ

⌋
+ 1

)
— the overall complexity

is Θ
(
λmax

ϵ · (n log n+ n ·m)
)
.

Global EDF: Under global EDF scheduling, if at any instant
there are more active jobs than processors, those jobs with
the earliest absolute deadlines are selected for execution.
Goossens et al. showed [8, Theorem 5] that a set Γ of implicit-
deadline tasks is schedulable on m processors if:∑

τi∈Γ

Ui ≤ m− (m− 1) ·max
τi∈Γ

{Ui} (6)

Because the utilization bound includes the maximum among
task utilizations, and because that maximum may change
(indeed, the task with the maximum utilization may change)
as utilizations are compressed, Buttazzo’s algorithm cannot
be applied directly. Orr and Baruah instead perform a linear
search over the space of possible values of λ, terminating when
Eqn. 6 holds true [3]. In §V, we present a polynomial-time
algorithm that finds an exact solution, if one exists.

III. UTILIZATION BOUNDS

This section considers elastic scheduling with utilization
bounds; in particular, we consider EDF and RM scheduling
on a uniprocessor and fluid scheduling on a multiprocessor.

A. Performance Evaluation

We begin by comparing the performance of our improved
algorithm for elastic scheduling of implicit-deadline tasks
from [4] to that of Buttazzo’s algorithm in [1], [2].

Complexity of Buttazzo’s Algorithm: As noted in §II-A,
Buttazzo’s elastic scheduling algorithm [1], [2] has worst-case
execution time complexity that is quadratic in the number
of tasks. Buttazzo et al. note in [1] that this is due to the
enforcement of constraints on minimum utilization. If tasks
are not thus constrained, the algorithm can run in linear time.
Intuitively, we may consider that some tasks, representing non-
critical best-effort computation, need not be characterized with
minimum utilizations. However, we note that without these
constraints, the algorithm can assign negative utilizations.

Example 1. Consider a set Γ of implicit-deadline elastic tasks
to be scheduled by EDF on a uniprocessor as follows.

Task τi Umax
i Ei

τ1 0.9 1
τ2 0.9 1
τ3 0.2 8

The total uncompressed utilization Umax
SUM is 2.0, but the

desired utilization is UD = 1.0. Then, in the absence of a
constraint Umin

i , the utilization Ui of each task τi will be
assigned according to Eqn. 2:

Ui = Umax
i −

(
2.0− 1.0

ESUM

)
× Ei = Umax

i −
(

1

10

)
× Ei

Computing for each task, we obtain U1 = U2 = 0.8 and
U3 = −0.6. While this set of assignments does achieve a total
utilization of 1.0, these assignments are not valid: a negative
utilization does not have semantic meaning.

Thus, the elastic problem with minimum utilization con-
straints Umin

i is the only meaningful expression of the problem
in the context of task scheduling, even if the constraints are
set to 0 just for the purpose of enforcing non-negative utiliza-
tion assignments. Therefore, Buttazzo’s algorithm cannot be
guaranteed to have better than quadratic time complexity in
the number of tasks. On the other hand, our algorithm in [4]
is quasilinear in the number of tasks, and linear for admission
control or changes to the utilization bound. The remainder of
this section compares the two algorithms empirically using
synthetic task sets with randomly-generated parameters.

Implementation: Evaluations are performed on a Raspberry
Pi 3 Model B+ with a 4-core ARMv8 Cortex-A53 run-
ning at 700 MHz (to prevent throttling — see [10], [11])
and 1GB of RAM. We compile Linux kernel 6.1.21 for
the ARMv7l 32-bit ISA. We implement both algorithms in
C++ and quantify execution time performance by measuring
elapsed processor cycles, reading directly from the cycle
counter using a custom driver and kernel module that enables
access to the ARM performance monitoring unit (PMU)
from userspace. Algorithms are compiled statically using
GCC version 10.2.1 at optimization level O0, allowing us
to avoid undesirable instruction reordering, especially around
reads to the cycle counter. To avoid interference from other
processes, we disable real-time throttling by writing −1 to
the file /proc/sys/kernel/sched_rt_runtime_us,
isolate CPU core 3 from the scheduler, and run our algorithms



0 10 20 30 40 50
Number of Tasks n

0

25

50

75

100

125

150

In
iti

al
iza

tio
n 

Ti
m

e 
(1

03  C
yc

le
s) Buttazzo

Binary Tree
Linked List
Array

(a) Median Init Times.

0 10 20 30 40 50
Number of Tasks n

0

10

20

30

40

50

Co
m

pr
es

sio
n 

Ti
m

e 
(1

03  C
yc

le
s) Buttazzo

Binary Tree
Linked List
Array

(b) Median Compress Times.

0 10 20 30 40 50
Number of Tasks n

0

25

50

75

100

125

150

To
ta

l T
im

e 
(1

03  C
yc

le
s)

Buttazzo
Binary Tree
Linked List
Array

(c) Median Total Times.

0 10 20 30 40 50
Number of Tasks n

5

10

15

20

25

Ad
m

iss
io

n 
Co

nt
ro

l T
im

e 
(1

03  C
yc

le
s)

   
  

Buttazzo
Binary Tree
Linked List
Array

(d) Median Admission Times.

0 10 20 30 40 50
Number of Tasks n

0

25

50

75

100

125

150

175

In
iti

al
iza

tio
n 

Ti
m

e 
(1

03  C
yc

le
s) Buttazzo

Binary Tree
Linked List
Array

(e) Max Init Times.

0 10 20 30 40 50
Number of Tasks n

0

20

40

60

80

100

Co
m

pr
es

sio
n 

Ti
m

e 
(1

03  C
yc

le
s) Buttazzo

Binary Tree
Linked List
Array

(f) Max Compress Times.

0 10 20 30 40 50
Number of Tasks n

25

50

75

100

125

150

175

To
ta

l T
im

e 
(1

03  C
yc

le
s)

Buttazzo
Binary Tree
Linked List
Array

(g) Max Total Times.

0 10 20 30 40 50
Number of Tasks n

10

20

30

40

50

60

70

80

Ad
m

iss
io

n 
Co

nt
ro

l T
im

e 
(1

03  C
yc

le
s)

   
  

Buttazzo
Binary Tree
Linked List
Array

(h) Max Admission Times.

Fig. 1: Performance comparison between Buttazzo’s algorithm [9, Figure 9.29] and our algorithm [4, Algorithm 1].

on that core at the highest real-time priority under Linux’s
SCHED_FIFO scheduling class.

We implement the version of Buttazzo’s algorithm presented
in [9, Figure 9.29], modified slightly to assign utilizations
without updating periods. We compare this to three imple-
mentations of our algorithm [4, Algorithm 1]:

• The set of tasks Γ is implemented as an array
(std::vector), which is sorted prior to executing the
algorithm. Inserting or removing tasks takes linear time to
move array elements (and, in the case of insertion, to find
the location to insert to maintain sorted order).

• The set of tasks Γ is implemented as a balanced binary tree
(std::set), sorted by ϕi. Constructing the set takes quasi-
linear time, but subsequent insertion and removal requires
only logarithmic time, while enabling sequential iteration
over tasks in sorted order.

• The set of tasks Γ is implemented as a linked list
(std::list), sorted by ϕi. Removing a task takes con-
stant time, but adding a task takes linear time to find the
location to insert to maintain sorted order.

Generating Task Sets: We generate sets Γ of n tasks τi,
generating 10 000 sets for each n in 2–50. Each set of tasks
has a total maximum utilization Umax

SUM selected at random uni-
formly from (1.0, 2.0] and a total minimum utilization Umin

SUM

selected at random uniformly from (0.0, 1.0]. We apply the
Dirichlet Rescale (DRS) algorithm [12] to distribute the total
maximum utilization Umax

SUM in an unbiased random fashion
across the Umax

i values for each individual task. We then apply
the DRS algorithm to distribute the total minimum utilization
Umin

SUM across the individual Umin
i values. DRS allows us to

select these values uniformly from the space of selections
satisfying the conditions that (i) the total

∑
i U

min
i equals the

specified Umin
SUM and (ii) each value Umin

i does not exceed the
corresponding Umax

i . Each task τi is then assigned an elasticity
Ei at random, selected uniformly from the range (0, 1].

Compression Time: We compress each set of tasks to a
total utilization of 1.0 (to be EDF-schedulable on a single
processor). We measure execution time by reading directly
from the cycle counter, reporting elapsed CPU cycles. We
separately measure the initialization (“Init”) and compres-
sion (“Compress”) times for each algorithm. For Buttazzo’s
algorithm, initialization only involves computing the Umin

SUM

value and checking whether it exceeds UD. The dominant
contribution to our algorithm’s execution time complexity is
the sorting of tasks by their ϕi values; we therefore include
in initialization time both the computation of USUM and ESUM

as well as the total time to calculate each task’s ϕi value and
establish the sorted order. For the array and list, the sort is
performed over the complete data structure; for the binary tree,
we insert tasks individually as their ϕi values are calculated.

The median and maximum times for the 10 000 sets of tasks
generated for each size n from 2–50 are reported in Fig. 1. As
expected, the time to initialize Buttazzo’s algorithm is much
faster than our algorithm, which has to sort tasks by their ϕi

values. Of our three implementations of our algorithm, the
linked list was the slowest to initialize, while the array was
the fastest; we assume that this was due to the data locality
and simplicity of managing the data structure.

Also, as expected, the compression time for Buttazzo’s
algorithm was much longer than for our algorithm. On average,
the array tended to be the fastest, followed by the linked list,
followed by the binary tree. This makes sense; while all three
data structures enable linear time traversal, the array is the
simplest to iterate and has the best data locality; the linked
list is still simple, but requires following pointers between
nodes, and does not have as good of locality; and the binary
tree requires even more complex pointer chasing.

Most interesting, we observe that our algorithm does not
strictly dominate Buttazzo’s algorithm in total running time. In
fact, in the average case, Buttazzo’s algorithm performs better
because of the low initialization overhead. In the worst case,
both Buttazzo’s algorithm and the array-based implementation



of our algorithm dominate the other two implementations, but
neither clearly dominates the other.

Nonetheless, we argue that our algorithm is better in prac-
tice. While there is not a clear advantage to using our algorithm
to perform compression over a complete set of tasks, there
is no clear disadvantage either. Furthermore, our algorithm
performs better in situations where initialization has already
happened, e.g. for online adjustment in response to changes
in available utilization. The worst execution times that we
observed for the array-based implementation of Sudvarg’s al-
gorithm were 3.45× faster than those of Buttazzo’s algorithm
when just compressing tasks.

Task Admission: We modify our implementations of each
algorithm to perform admission of a single task. For the
sets of n tasks of size 2–50 that we already generated, we
apply each algorithm to the first n− 1 tasks, then measure
the time to compress after admitting the nth task. Results are
also illustrated in Fig. 1. We observe that, when admitting
a new task, all implementations of our algorithm dominate
Buttazzo’s algorithm for more than 3 tasks in the average case,
and more than 10 tasks in the worst case. The array (which
enables logarithmic time search for the location to insert the
new task, then requires linear time to perform the insertion)
performs the best on average, followed by the balanced binary
tree (which allows logarithmic-time insertion, but requires
pointer chasing), then the linked list (which allows constant-
time insertion after linear time search for the insert location).
The array-based implementation of our algorithm admits tasks
2.53× faster than Buttazzo’s algorithm in the worst case.

B. Extension to Fluid Scheduling

A set of tasks are fluid schedulable on m identical processor
cores if and only if (i) their total utilization does not exceed
m, and (ii) no individual task’s utilization exceeds 1 [6]. Orr
and Baruah therefore argued that, so long as each elastic task’s
maximum utilization Umax

i ≤ 1, Buttazzo’s algorithm can be
extended to fluid scheduling simply by setting the desired
utilization UD = m.

The results and conclusions drawn in this section are
therefore applicable to fluid scheduling as well: Sudvarg’s
algorithm [4, Algorithm 1] may be used in place of Buttazzo’s
algorithm [9, Figure 9.29] to achieve faster compression (once
initialized) and admission of new tasks. Evaluations show
that the execution times of the tested implementations of
both algorithms do not depend on Umin

SUM or Umax
SUM — the

total minimum or maximum utilizations — nor the difference
between them.1 Therefore, the performance results illustrated
in Fig. 1 should also extend to fluid scheduling.

IV. PARTITIONED EDF

In this section, we propose two alternative approaches to
elastic scheduling of partitioned EDF tasks. First, we consider
a binary, rather than linear, search over the space of com-
pression allowed due to the minimum utilization constraint on

1Plots omitted for length, but are available at https://sudvarg.com/SIES24.

each task. Second, using the insight that under partitioned EDF
scheduling, a set of tasks is guaranteed to be schedulable if its
utilization does not exceed a function of the number of cores,
we apply our algorithm from [4, Algorithm 1] for compressing
to this utilization bound.

A. Binary Search

We observe that a straightforward optimization may be
applied to the approach of Orr and Baruah [3] sum-
marized in §II. Rather than iterating over all values of
λ ∈ [0, λmax] with granularity ϵ in sequential order, we can
instead perform a binary search in time Θ

(
log λmax

ϵ

)
, as

outlined in Alg. 1. Total time complexity is reduced to
Θ

(
(n logn+ n ·m) · log

(
λmax

ϵ

))
.

Algorithm 1: Elastic Partitioned EDF(Γ,m)
Input: A list Γ of elastic tasks to schedule on m processor cores
Output: The value λ to obtain feasibility

1 λmax ← 0
2 forall τi ∈ Γ do

3 λmax
i ← Umax

i −Umin
i

Ei

4 λmax ← max
(
λmax, λmax

i

)
5 end
6 if Γ(0) is schedulable on m cores then return 0
7 if Γ(λmax) is not schedulable on m cores then return INFEASIBLE
8 λHI ← λmax, λLO ← 0
9 do

10 λ← (λHI − λLO) /2
11 if Γ(λ) is schedulable on m cores then λHI ← λ
12 else λLO ← λ
13 while λHI − λLO > ϵ
14 return λHI

Alg. 1 uses the notation Γ(λ) from Baruah [13], denoting
the task system obtained from Γ by applying compression λ,
i.e., with each task τi having a utilization Ui(λ) according to
Eqn. 4. The algorithm first checks if Γ(0) — the uncompressed
task set — is schedulable by partitioned EDF on m cores;
schedulability may be determined according to the heuristics
employed by Orr and Baruah [3]. If so, it returns the value
λ = 0. It then checks if Γ(λmax) is schedulable; if not, the
algorithm fails. Otherwise, it performs binary search over val-
ues of λ in the range [0, λmax]: λHI (initialized to λmax) tracks
the smallest value of λ tested for which Γ(λ) is schedulable,
while λLO (initialized to 0) tracks the largest tested value for
which Γ(λ) is not schedulable. At each step, the algorithm
checks schedulability of Γ(λ); if feasibility is determined,
λHI is decreased to the tested value of λ; otherwise, λLO is
increased to the tested value of λ. The algorithm terminates
when the difference between λHI and λLO does not exceed ϵ.
Optimality: We now discuss and prove results about the
optimality of linear and binary searches for partitioned EDF
scheduling. We begin by introducing the term λ∗

Γ,m, defined
as the smallest value of λ for which Γ(λ) is schedulable by
partitioned EDF on m cores. The first result is intuitive: it
says that, once you compress a task system such that it is
schedulable, it remains schedulable when compressed more.

Lemma 1. Given a value of λ, if Γ(λ) is partitioned EDF
schedulable on m cores, then Γ(λ′) is also partitioned EDF
schedulable for every value of λ′ ≥ λ.



Proof. Consider a set Γ of n tasks τi. If Γ(λ) is partitioned
EDF schedulable on m cores, then there exists a partition
{Γ1, . . . ,Γm} of Γ such that the following condition holds:

∀j ∈ 1..m,
∑
τi∈Γj

Ui(λ) ≤ 1

Consider a value λ′ ≥ λ. For each task τi, Ui(λ
′) ≤ Ui(λ), so

∀j ∈ 1..m,
∑
τi∈Γj

Ui(λ
′) ≤

∑
τi∈Γj

Ui(λ) ≤ 1

So there remains a partition where the condition holds.

It follows that Γ(λ) is partitioned EDF schedulable for every
value of λ that exceeds λ∗

Γ,m. This allows us to say something
about the optimality of the elastic algorithms.

Theorem 1. The values of λ obtained by using the linear
approach of Orr and Baruah [3] or the binary search in Alg. 1
will be within ϵ of λ∗ if an exact test of partitioned EDF
schedulability is performed for Γ(λ) at each considered value
of λ. In other words, λ− λ∗ < ϵ.

Proof. Linear Search: The algorithm tests λ = 0 first; if
λ∗ = 0, then the algorithm returns this value. Otherwise, con-
sider the value λ returned by the algorithm: Γ(λ) is feasible,
but Γ(λ− ϵ) is not feasible. It follows from Theorem 1 that
λ∗ > λ− ϵ, which implies λ− λ∗ < ϵ.

Binary Search: The algorithm again tests λ = 0 first; if
λ∗ = 0, then the algorithm returns this value. Otherwise,
consider the value λHI returned by the algorithm: Γ(λHI) is
feasible, but Γ(λLO) is not; thus, by Theorem 1, λ∗ > λLO.
Due to the algorithm’s termination condition, we know that
λHI − λLO ≤ ϵ, and so λ− λ∗ < ϵ.

This tells us that, given an exact schedulability test for
partitioned EDF, both algorithms will find values for λ that
are within ϵ of the optimal value λ∗, and are therefore within
ϵ of each other. However, no such guarantee can be made
if schedulability is determined by heuristic, as illustrated in
Fig. 3. A corollary then follows from the above results.

Corollary 1. Given a value of λ, if Γ(λ) is identified by
heuristic to be partitioned EDF schedulable on m cores, then
Γ(λ′) might not be identifiable as such for some λ′ > λ.

The implication, then, is that while binary search is faster,
it might overcompress a set of tasks by more than ϵ when
applying heuristic partitioning (of course, the linear search
might overcompress as well). However, as we show in §IV-C,
binary search compresses, on average, only 0.054×ϵ more than
linear search for the sets of tasks we evaluated.

B. Application of Our Algorithm in [4]

In [14], it is observed that under the first fit and best fit
heuristics, a set Γ of tasks τi are schedulable on m processor
cores if their total utilization does not exceed (m+ 1)/2 and
if no single task’s utilization exceeds 1. Thus, [4, Algorithm
1] can be adopted by compressing to a desired utilization
UD=(m+ 1)/2, achieving compression in O(n log n) time.

We note that (m+ 1)/2 is an upper-bound on the utilization
required by these heuristics. Thus, the amount of compression
due to this approach might be more than necessary to achieve
partitioned EDF schedulability. It follows that the approach of
Orr and Baruah [3], though slower, might achieve better results
— both in terms of compressing utilizations less aggressively,
and by identifying more schedulable task sets.

C. Evaluation

Implementation: We implement Alg. 1 in C++, compiling and
measuring execution times using the same settings as for the
algorithms in §III-A, running them on the same Raspberry
Pi 3B+. For each value of λ tested, we attempt to find a
schedulable partition by employing the best fit decreasing
then first fit decreasing bin backing heuristics. The algorithm
terminates if either is successful.

Generating Task Sets: We generate synthetic task sets ac-
cording to Orr and Baruah’s methodology in [3]. We measure
each implementation’s time to compress the tasks to run on
platforms with m = 4, 8, and 16 identical cores. For each
value m, we consider sets of n tasks, with n = 2m, 4m,
and 8m. The maximum utilization Umax

i assigned to each
task τi is selected at random, but constrained to be no more
than a parameter α ∈ {0.6, 0.8, 1.0}. Each set of tasks
has a total maximum utilization Umax

SUM of u×m×α, where
u ∈ {1.1, 1.5, 1.9}. For each unique combination of m, n,
α, and u, we generate 1000 sets of tasks.

We use the DRS algorithm [12] to distribute the total
maximum utilization Umax

SUM across individual Umax
i values.

Individual minimum utilizations Umin
i are assigned at random,

selected uniformly from the range (0, Umax
i ]. Elastic coeffi-

cients Ei are selected at random uniformly from (1, 5].

Linear versus Binary Search: We begin by comparing the
linear algorithm from Orr and Baruah [3] to the binary search
in Alg. 1. For each set of tasks, we compute λmax using Eqn. 5,
then search for the optimal λ with granularity ϵ = λmax/1000
(the same value tested in [3]).

Fig. 2 shows, for each combination of u and α, the speedup
achieved by binary over linear search. (Dependence on values
of n and m was less significant.) Task sets not requiring
compression or deemed infeasible are excluded. Binary search
achieves significant speedups, especially for larger values of α
and u. These task sets have larger total maximum utilizations,
and therefore tend to need more compression to achieve
schedulability. In such cases, the linear search takes longer
to reach the higher λ value, so binary search is significantly
faster. Median speedups for each combination were as high as
38×, while the maximum speedup observed was 86×.

Fig. 3 shows, for each combination of m and n, the
distribution of differences between the amount of compression
achieved by binary search (λBS) and linear search (λLIN),
normalized by ϵ. We again exclude trivial or infeasible task
sets. Where outliers extend beyond the plotted boundaries,
the x-axis labels denote the maximum value. We observe
that, although the values λBS and λLIN typically do not differ



=0
.6

u=
1.

5

=0
.6

u=
1.

9

=0
.8

u=
1.

1

=0
.8

u=
1.

5

=0
.8

u=
1.

9

=1
.0

u=
1.

1

=1
.0

u=
1.

5

=1
.0

u=
1.

9

100

101

102

Sp
ee

du
p

Maximum
Median

Fig. 2: Speedup achieved by binary versus linear search.

m
=4

, n
=8

m
ax

=0
.9

6
m

=4
, n

=1
6

m
ax

=2
01

.3
m

=4
, n

=3
2

m
ax

=3
.4

5
m

=8
, n

=1
6

m
ax

=0
.9

6
m

=8
, n

=3
2

m
ax

=2
0.

17
m

=8
, n

=6
4

m
ax

=2
.5

m
=1

6,
 n

=3
2

m
ax

=0
.9

6
m

=1
6,

 n
=6

4
m

ax
=2

8.
0

m
=1

6,
 n

=1
28

m
ax

=0
.9

7

4

2

0

2

4

(
BS

LI
N
)/

Fig. 3: Compression achieved by binary versus linear search.

by more than ϵ, there are cases where they differ by much
more. For 16 tasks on 4 cores, with α = 1.0 and u = 1.9,
λBS exceeds λLIN by more than 200×ϵ. Generally, we see
that outliers occur where λBS is larger than λLIN. This makes
sense due to the behavior of binary search: search proceeds
downward in factors of 2 from larger values, and if Γ(λ)
is deemed unschedulable for some tested value of λ greater
than the optimal λ∗, the binary search will continue to test
larger values. Despite these outliers, the average compres-
sion values agree closely, differing by less than 0.06×ϵ for
every considered combination. Therefore, given the significant
speedups gained, binary search is an attractive approach.

Fast Compression: Though the binary search already improves
execution time significantly, we expect that applying our
quasilinear-time algorithm from [4] to be even faster, though
we also expect it to be more pessimistic. We evaluate this
hypothesis by comparing the number of task sets each algo-
rithm deems feasible, the corresponding values of λ necessary
for schedulability, and the time to find those values of λ. As
in [3], to ensure a consistent comparison, we only compare λ
values (and, in our case, execution times — this was outside
the scope of the work in [3]) for those tasks deemed feasible.

The top plot in Fig. 4 shows the percentage of schedu-
lable task sets identified by the binary search (BS) and our
quasilinear-time algorithm (SGB) to compress to the heuristic
utilization bound for every combination of α and u. The
bottom compares the median and maximum execution time
speedup gained by SGB over BS to the mean λ values achieved
by each implementation. As in [3], λ values are normalized
by λmax to give a value in the interval [0,1]; this is necessary
for comparing λ values across task sets.

0

50

100

%
 S

ch
ed

ul
ab

le

BS
Sud

=0
.6

u=
1.

1
=0

.6
u=

1.
5

=0
.6

u=
1.

9
=0

.8
u=

1.
1

=0
.8

u=
1.

5
=0

.8
u=

1.
9

=1
.0

u=
1.

1
=1

.0
u=

1.
5

=1
.0

u=
1.

9

0.0

0.5

1.0

No
rm

al
ize

d 

0

10

20

30

Sp
ee

du
p

 BS
 Sud

Med Spdup
Max Spdup

Fig. 4: Speed and schedulability tradeoffs.

We observe that SGB identifies fewer schedulable task sets,
and for those it does identify as schedulable, it typically
requires more compression. Nonetheless, at the cost of more
pessimism, SGB achieves speedups observed to reach over
20×; this may be desirable where online decisions must be
made rapidly. For example, in mixed-criticality systems [15],
[16], elastic frameworks have been proposed to extend the
periods of low-criticality tasks, rather than suspending them,
in response to critical task overruns [17]. The transition must
be made as quickly as possible, and so overcompression is
acceptable (and is no worse than the alternative of dropping
all low-criticality jobs).

V. GLOBAL EDF

In this section, we present an exact polynomial-time al-
gorithm for elastic scheduling under global EDF. Recall the
schedulability condition [8, Theorem 5] from Eqn. 6 in §II.
Without loss of generality, let’s say that τj is the task with the
maximum utilization, i.e., Uj = maxτi∈Γ{Ui}. Then we can
restate the schedulability condition as

∑
τi,i̸=j Ui+mUj ≤ m.

Theorem 2. For a set Γ of elastic tasks, the amount of com-
pression λ needed to satisfy the above schedulability condition
can be found by finding λ for the condition

∑
τi∈Γ∗ Ui ≤ m

for a set Γ∗ where τj = (Umin
j , Umax

j , Ej) in Γ has been
replaced by a task τ∗j = (mUmin

j ,mUmax
j ,mEj) in Γ∗.

Proof. Consider the value λ satisfying
∑

τi∈Γ∗ Ui = m, i.e.,∑
τi∈Γ∗ max

{
Umax
i − λEi, U

min
i

}
= m. Assume that τ∗j ∈

Γ∗ is parameterized as τ∗j = (mUmin
j ,mUmax

j ,mEj). Then:∑
τi∈Γ∗,i̸=j

max
{
Umax
i − λEi, U

min
i

}
+max

{
mUmax

j − λmEj ,mUmin
j

}
= m

Equivalently, ∑
τi∈Γ∗,i̸=j

max
{
Umax
i − λEi, U

min
i

}
+m×max

{
Umax
j − λEj , U

min
j

}
= m

So
∑

τi∈Γ,i̸=j Ui(λ) +mUj(λ) = m.



Intuitively, this says we can replace τj with a task τ∗j with
utilization and elasticity values scaled by m; schedulability
is then based on a utilization bound of m and the system
can be compressed using our algorithm [4, Algorithm 1].
However, as the task with the maximum utilization can change
during compression, the utilization bound (the RHS of Eqn. 6)
might no longer hold. Therefore, we must assume every task
may take the role of τj after compression, so we repeat this
procedure for each task. We then take the result for which
(i) the task with the maximum utilization after compression
matches the one taking the role of τj ; and (ii) if there are
multiple such consistent results, we take the one that applies
the least compression. This procedure is outlined in Alg. 2.

We note that although our compression algorithm, as written
in [4, Algorithm 1], does not return a value of λ, it can be
easily modified to do so. From Equations 2 and 4 we can see
that λ =

(
USUM−(UD−∆)

ESUM

)
. This value is computed and tracked

by our algorithm, and so it can be retrieved in constant time
for use in Line 9 of Alg. 2.
Algorithm 2: Elastic Global EDF(Γ,m)

Input: A list Γ of elastic tasks to schedule on m processor cores
Output: The value λ to obtain feasibility

1 if Γ(0) is schedulable on m cores then return 0
2 if Γ(λmax) is not schedulable on m cores then return INFEASIBLE
3 Sort Γ in non-decreasing order of ϕi (see Eqn. 3)

4 λ← λmax

5 forall τi ∈ Γ do
6 τj ← (Umax

j : mUmin
i , Umin

j : mUmin
i , Ej : mEi)

7 Γ∗ ← Γ, Remove τi and insert τj into Γ∗

8 ▷ Invoke our linear-time algorithm from [4]
9 λ∗ ← ELASTIC COMPRESSION(Γ∗,m)

10 if Uj/m is the maximum compressed utilization and λ∗ < λ
then λ← λ∗

11 end
12 return λ

Execution Time Complexity: For a set Γ of n tasks, sorting
in order of ϕi values takes time O(n log n). Inside the forall
loop in Alg. 2, constructing τj from τi takes constant time.
From Eqn. 3 we can see that ϕj = ϕi, so τj can replace τi
directly in constant time and Γ∗ retains it sort order. Our
compression algorithm runs in quasilinear time, but this time
is dominated by sorting the tasks [4]. Since Γ has already
been sorted, compression takes time linear in the number of
tasks. Checking whether Uj/m is the maximum compressed
utilization also takes linear time. Since each iteration of the
loop takes time O(n) and it runs once for each of the n tasks,
the total execution time complexity is O(n2).

VI. CONCLUSIONS AND FUTURE WORK

We have evaluated the execution times of Buttazzo’s and
Sudvarg’s elastic scheduling algorithms, demonstrating that
Sudvarg’s algorithm provides better performance after initial-
ization, and is therefore more suitable for online adaptation.
We have also proposed to use binary, rather than linear, search
to find the “amount” of compression necessary for elastic task
systems scheduled by algorithms without a simple utilization
bound. We demonstrated significant speedups for heuristic
schedulability analysis of partitioned EDF. Furthermore, we

considered an application of Sudvarg’s algorithm to partitioned
EDF; though pessimistic, it enables even faster adaptation than
binary search, and so may be appropriate where an online deci-
sion must be made rapidly (e.g., critical job overrun in mixed
criticality systems). Finally, we have proposed a quadratic-
time exact algorithm for elastic scheduling under global EDF.
As future work, we will evaluate other applications of binary
search for compression (e.g., to the hyperbolic bound for
rate monotonic scheduling) and develop new polynomial-time
algorithms (e.g., for elastic scheduling of algorithm PriD).

REFERENCES

[1] G. C. Buttazzo, G. Lipari, and L. Abeni, “Elastic Task Model for
Adaptive Rate Control,” in IEEE Real-Time Systems Symposium, 1998.

[2] G. C. Buttazzo, G. Lipari, M. Caccamo, and L. Abeni, “Elastic
Scheduling for Flexible Workload Management,” IEEE Transactions on
Computers, vol. 51, no. 3, pp. 289–302, Mar. 2002. [Online]. Available:
http://dx.doi.org/10.1109/12.990127

[3] J. Orr and S. Baruah, “Multiprocessor scheduling of elastic tasks,”
in Proc. of 27th International Conference on Real-Time Networks
and Systems. ACM, 2019, pp. 133–142. [Online]. Available:
https://doi.org/10.1145/3356401.3356403

[4] M. Sudvarg, C. Gill, and S. Baruah, “Linear-time admission control for
elastic scheduling,” Real-Time Systems, vol. 57, no. 4, pp. 485–490, 10
2021. [Online]. Available: https://doi.org/10.1007/s11241-021-09373-4

[5] C. L. Liu and J. W. Layland, “Scheduling algorithms for multiprogram-
ming in a hard-real-time environment,” Journal of the ACM (JACM),
vol. 20, no. 1, pp. 46–61, 1973.

[6] S. K. Baruah, N. K. Cohen, C. G. Plaxton, and D. A. Varvel,
“Proportionate progress: A notion of fairness in resource allocation,”
Algorithmica, vol. 15, no. 6, pp. 600–625, Jun 1996. [Online].
Available: https://doi.org/10.1007/BF01940883

[7] J. M. López, J. L. Dı́az, and D. F. Garcı́a, “Utilization Bounds for
EDF Scheduling on Real-Time Multiprocessor Systems,” Real-Time
Systems, vol. 28, no. 1, pp. 39–68, Oct 2004. [Online]. Available:
https://doi.org/10.1023/B:TIME.0000033378.56741.14

[8] J. Goossens, S. Funk, and S. Baruah, “Priority-driven scheduling
of periodic task systems on multiprocessors,” Real-Time Systems,
vol. 25, no. 2, pp. 187–205, Sep 2003. [Online]. Available:
https://doi.org/10.1023/A:1025120124771

[9] G. C. Buttazzo, Hard Real-Time Computing Systems: Predictable
Scheduling Algorithms and Applications, 3rd ed. New York: Springer
US, 2011, ch. Handling Overload Conditions, pp. 287–347.

[10] T. Blass, A. Hamann, R. Lange, D. Ziegenbein, and B. B. Brandenburg,
“Automatic Latency Management for ROS 2: Benefits, Challenges,
and Open Problems,” in 2021 IEEE 27th Real-Time and Embedded
Technology and Applications Symposium (RTAS), 2021, pp. 264–277.

[11] M. Sudvarg and C. Gill, “A Concurrency Framework for Priority-
Aware Intercomponent Requests in CAmkES on seL4,” in 2022 IEEE
28th International Conference on Embedded and Real-Time Computing
Systems and Applications (RTCSA), 2022.

[12] D. Griffin, I. Bate, and R. I. Davis, “Generating Utilization Vectors for
the Systematic Evaluation of Schedulability Tests,” in 2020 IEEE Real-
Time Systems Symposium (RTSS), 2020, pp. 76–88.

[13] S. Baruah, “Improved uniprocessor scheduling of systems of sporadic
constrained-deadline elastic tasks,” in Proceedings of the 31st
International Conference on Real-Time Networks and Systems (RTNS
2023). New York, NY, USA: Association for Computing Machinery,
2023. [Online]. Available: https://doi.org/10.1145/3575757.3575759

[14] ——, “Partitioned EDF scheduling: a closer look,” Real-Time Systems,
vol. 49, no. 6, pp. 715–729, Nov 2013. [Online]. Available:
https://doi.org/10.1007/s11241-013-9186-0

[15] S. Vestal, “Preemptive Scheduling of Multi-criticality Systems with
Varying Degrees of Execution Time Assurance,” in 28th IEEE Interna-
tional Real-Time Systems Symposium (RTSS 2007), 2007, pp. 239–243.

[16] A. Burns and R. I. Davis, “A survey of research into mixed criticality
systems,” ACM Comput. Surv., vol. 50, no. 6, 11 2017. [Online].
Available: https://doi.org/10.1145/3131347

[17] H. Su and D. Zhu, “An Elastic Mixed-Criticality Task Model and Its
Scheduling Algorithm,” in 2013 Design, Automation & Test in Europe
Conference & Exhibition (DATE), 2013, pp. 147–152.


