
PolyRhythm: Adaptive Tuning of a Multi-Channel
Attack Template for Timing Interference

Ao Li∗, Marion Sudvarg∗, Han Liu, Zhiyuan Yu, Chris Gill, Ning Zhang
{ao, msudvarg, h.liu1, yu.zhiyuan, cdgill, zhang.ning}@wustl.edu

Department of Computer Science & Engineering, Washington University in St. Louis

Abstract—As cyber-physical systems have become increasingly
complex, rising computational demand has led to the ubiquitous
use of multicore processors in embedded environments. Size,
Weight, Power, and Cost (SWaP-C) constraints have pushed more
processes onto shared platforms, including real-time tasks with
deadline requirements. To prevent temporal interference among
tasks running concurrently or in parallel in such systems, many
operating systems provide priority-based scheduling and enforce
processor reservations based on Worst-Case Execution Time
(WCET) estimates. However, shared resources (both architectural
components and data structures within the operating system)
provide channels through which these constraints can be broken.
Prior work has demonstrated that malicious execution by one or
more processes can cause significant delays, leading to potential
deadline misses in victim tasks.

In this paper, we introduce PolyRhythm, a three-phase attack
template that combines primitives across multiple architectural
and kernel-based channels: (1) it uses an offline genetic algo-
rithm to tune attack parameters based on the target hardware
and OS platform; then (2) it performs an online search for
regions of the attack parameter space where contention is most
likely; and finally (3) it runs the attack primitives, using online
reinforcement learning to adapt to dynamic execution patterns
in the victim task. On a representative platform (Raspberry Pi
3B) PolyRhythm outperforms prior work, achieving significantly
more slowdown. As we show for several hardware/software
platforms, PolyRhythm also allows us to characterize the extent
to which interference can occur; this helps to inform better
estimates of execution times and overheads, towards preventing
deadline misses in real-time systems.

Index Terms—real-time systems, interference channels, attack
templates, parameter tuning, contention regions

I. INTRODUCTION

Real-time and embedded systems are now designed for
increasingly complex cyber-physical applications with high
computational demands, e.g., object recognition [1] and lo-
calization [2] in autonomous vehicles [3], [4]. Such systems
are often constrained in Size, Weight, Power, and Cost (SWaP-
C), motivating the need to run these computationally-intensive
applications concurrently on a single computer. These con-
straints, combined with the challenges of heat dissipation and
the need to maintain stable processor frequencies [5], have
driven a move toward multi-core platforms. Recent approaches

∗ denotes equal contribution. This work is supported in part by the US
National Science Foundation under grants CNS-1837519, CNS-1916926,
CNS-2038995, CNS-2154930, CNS-2229427, CSR-1814739, and CNS-
17653503; the National Aeronautics and Space Administration under grant
80NSSC21K1741; and by the Army Research Office under contract W911NF-
20-1-0141. Many thanks to Sanjoy Baruah for his insights and advice through
the entire process.

to partitioned scheduling of tasks on multiple processors have
yielded greater utilization bounds in theory [6]–[8]; yet in
practice, contention for hardware and kernel resources shared
between cores can cause temporal interference, inflating worst-
case execution times (WCETs) beyond typical estimates [9].

Prior work has demonstrated several architectural channels
in multicore systems over which concurrent access can cause
delays in task execution times. The main memory bus, con-
troller, and DRAM row buffers [10], as well as the cache, its
writeback buffers, and miss-status-holding-registers [11], can
all be targeted by malicious processes to interfere with victim
task execution. The translation lookaside buffer (TLB) adds
another source of execution time unpredictability, with misses
incurring additional overhead to traverse page tables during
memory access [12]. Besides these architecture-based attacks,
shared kernel data structures requiring synchronized access
serve as additional channels for interference [13]. Attacks on
these can increase context switching times and even induce
priority inversion in kernel execution pathways [14], increasing
CPU utilization and delaying or blocking task activation.
Additionally, even in kernels that impose temporal budgets
on isolated processes (e.g., through the use of bandwidth
servers [15] or scheduling contexts [16]), frequent context
switching can lead to greater overheads and increased con-
tention for shared kernel data structures.

Existing attacks typically focus on individual vectors, e.g.,
cache contention in multicore systems. These require sig-
nificant effort to tune manually, though machine learning
approaches also have proven effective for increasing interfer-
ence [17]. Additionally, adversaries aiming to force a system
to violate its timing guarantees might use multiple vectors. To
understand the extent to which an attacker can cause interfer-
ence by automating a multi-channel timing interference attack,
we introduce and evaluate PolyRhythm1, a three-phase attack
template that combines primitives across multiple architectural
and kernel-based channels.

PolyRhythm is multi-channel, adopting a strong threat
model in which an attacker (constrained by core affinity, pri-
ority, and/or CPU utilization by the kernel) uses combinations
of attack primitives over architectural and operating system
channels to interfere with the timing of a victim process. We
consider hardware contention in main memory, cache, and
the TLB; and contention for operating system resources such

1The PolyRhythm tool, associated source code, and instructions for use are
all available at https://github.com/WUSTL-CSPL/PolyRhythm.

as network and I/O queues, as well as syscalls for which a
portion of the kernel execution is synchronized (e.g., locked
by a mutex).

PolyRhythm is templated, providing a general framework
of contention attacks on architectural and operating system
resources that decouples attack design from concrete imple-
mentation on a given platform. It is also automated, exploiting
more effective and efficient combinations of parameter values
than could be found manually. We evaluate to what extent such
attacks can inflate task execution or response times, potentially
causing victim tasks to miss deadlines. This paper makes the
following contributions:

• It surveys architectural and operating system channels
that can be exploited by one or more attacking processes
to induce timing interference on a victim task, identifying
a broader unified attack surface than has been explored
in any single example of prior work.

• It introduces PolyRhythm, a three-phase, template-based
technique for constructing multi-channel attacks. The first
phase uses a genetic algorithm to optimize the template
parameters of each attack primitive according to char-
acteristics of the target hardware and operating system
platform. In the second phase, PolyRhythm performs
online search to identify contention regions, which are
regions of the attack parameter space where contention
is most likely (e.g., targeted cache eviction sets).

• It shows how by observing workload-specific execution
and resource usage patterns at run-time, an attacker can
leverage a deep deterministic policy gradient to adapt
uniquely to online variations in the victim’s behavior. In
its third phase, PolyRhythm executes attacks using this
learning-based technique to switch dynamically between
active primitives, thus continuing to induce optimized
interference.

• It uses these techniques to characterize – for several hard-
ware/software platforms – the extent to which interfer-
ence can occur. This allows us to make recommendations
about both how to avoid this interference where possible
and how to account for it where necessary (e.g., by
informing WCET estimates), to prevent deadline misses
in real-time systems.

II. BACKGROUND AND RELATED WORK

The attack primitives used in PolyRhythm are based on
interference channels that have been explored in prior work.
In this section we identify both architectural and operating
system channels that have been shown effective, including in
prior template based attacks. In Section VI we explain how
PolyRhythm goes beyond prior work to use such channels
even more effectively than has been achieved to date.

A. Architectural Channels

Shared Memory Resources: On multi-core platforms, there
are typically fewer memory nodes than processor cores; there-
fore concurrent requests to main memory must be brokered
across common interconnect buses. These can take the form

of a single shared bus [18], or may be distributed across
a tree-like structure that multiplexes requests at multiple
stages [19]. More complex memory routing, via packet switch-
ing networks, is employed in network-on-chip designs [20].
No matter the granularity at which interconnects are shared,
competing access can be exploited to induce delays: in [21],
it was shown that bus contention can significantly impact
task WCETs in real-time systems; and in the Android OS,
an application targeting the memory bus was demonstrated
to interfere with victim application performance [22]. Direct
memory access (DMA) by devices must traverse these same
buses (as well as additional interconnects for the device
controllers), which can induce further interference [23].

Even after a request is delivered over the interconnect, sub-
sequent memory latency may vary significantly. Data already
in DRAM row buffers can be retrieved several times faster
than on a buffer miss or conflict [24]. Row buffer latency and
memory controller and bus contention have been exploited
successfully by Denial of Service (DoS) attacks [10]. Other
memory architectures have been exploited as well: multi-
core and multi-processor systems that employ Non-Uniform
Memory Access (NUMA) use multiple memory nodes with
separate controllers; these induce even greater variability in
access latencies, which may hurt performance in unexpected
ways [25]. Though NUMA-based architectures are becoming
more common, we consider only embedded platforms with
uniform memory access and defer integration of NUMA attack
primitives into our attack template to future work.

Cache-Based Attacks: The cache can reduce memory request
latency by keeping recently-accessed data closer to the CPU.
A cache hit obviates the delays associated with main memory
access; however, a miss may result in orders of magnitude
greater latency in the worst case. Managing the associated
unpredictability, especially where task switches disrupt cache
working sets, or in shared cache levels in multi-core systems,
is challenging in real-time systems. Techniques such as cache
coloring [26] partition the cache among separate tasks or
cores, isolating task performance from interference caused by
other processes’ access patterns. Despite careful partitioning,
however, some architectures incorporate shared hardware over
which cache contention can still occur. For example, in non-
blocking caches, miss-status-holding-registers (MSHRs) are
used to queue memory requests to handle outstanding cache
misses [27]; when the registers are exhausted, the cache reverts
to blocking behavior, which can cause substantial delays.
Writeback caches buffer data to be written back to main mem-
ory, attempting to perform the writes only during quiescent
periods. Because the writeback buffer is shared among all
users of the cache, it too has been exploited successfully as a
channel for interference in multi-core systems [11], [28].

Unpredictability of the TLB: As another type of cache,
the translation lookaside buffer (TLB) also introduces tim-
ing unpredictability: the overhead induced by virtual address
translation is dramatically worse on a TLB miss, especially
in virtualization environments that use second-level address

2

translation [29]. However, many multi-core architectures pro-
vide a dedicated TLB per core, and many operating sys-
tem kernels perform a TLB shootdown on each context
switch [30], making opportunities for interference harder to
identify. Nonetheless, the implications of this flushing are
significant: when a process is context-switched onto the pro-
cessor, its initial memory access will automatically result
in a TLB miss. As we demonstrate in this paper, context-
switch attacks (where an attacker forces a high rate of con-
text switching) can cause delays in victim processes, as the
rate of TLB misses drastically increases. Some architectures,
however, allow the kernel to tag TLB entries with process-
specific identifiers, meaning that the TLB need not be flushed
on every context switch. TLB coloring techniques (which are
conceptually similar to cache coloring) have been proposed to
reduce interference [12]; however, as the number of concurrent
processes increases, each dedicated partition must decrease in
size. Context-aware preloading techniques may decrease the
potential for interference under these circumstances [30]. In
this paper, we constrain our evaluation to systems for which
the TLB is flushed on each context switch; consideration of
TLB coloring is deferred to future work.

Recent work also has demonstrated effective attacks on the
TLB as an information side-channel [31], [32]. While we
focus on attack channels for timing interference, these are
inextricably linked [33]: information side-channels are typi-
cally exploited by measuring timing inconsistencies; similarly,
the presence of timing inconsistencies results in unpredictable
execution and possible interference and response time delays.
Mechanisms that address either will surely be relevant to both.

B. Operating System Channels

I/O and Network Attacks: As block and network device
speeds have increased, in-kernel request queues have become
a bottleneck in multi-core and many-core systems, especially
where (like in the Linux block layer) a single queue is shared
among cores [34]. Cascade attacks, which exhaust one type of
hardware resource to cause a cascade of performance degra-
dation over other channels, have proven effective in causing
significant network and disk I/O interference amongst co-
resident VMs in virtualized environments [35]. Denial of ser-
vice (DoS) attacks on these same resources have been launched
by malicious VMs in cloud environments [36]. In those same
environments, resource-freeing attacks [37] may interfere with
a victim VM’s resource usage to free other resources for an
attacker VM’s benefit. In microkernels where I/O access is
brokered by userspace components, specially-crafted attacks
have demonstrated that a “Thundering Herd” of low-priority
tasks can induce priority inversion and significantly delay the
delivery of I/O replies to a high-priority task [13].
Kernel Data Structures: Shared data structures over which
control flows maintain consistent state among cores present
another class of interference channels. Accessing these struc-
tures can cause delays that scale with the number of elements
or even induce priority inversion (i.e., when kernel execu-
tion on behalf of low-priority threads obtains a lock on the

resource). Lock scalability to multiple cores is an area of
significant concern [38], as contention for locks that do not
properly scale can cause significant blocking delays [39]. In
systems that use thread migration for IPC, the set of available
stacks may be a limited resource, and contention can induce
priority inversion [14]. Some modern microkernels, such as
SPeCK [40] have attempted to address these scalability issues.
Others, however, are still vulnerable to attacks that leverage
contention on run queues, signaling and IPC endpoints, budget
replenishment queues, and timer queues [13].

C. Tunable Attack Templates

Exploiting architectural and kernel vulnerabilities has tra-
ditionally required detailed knowledge of the target. How-
ever, focus has recently shifted to attacks that generalize
to a broader range of platforms, allowing exploits to be
constructed without prior knowledge of victim behavior or
system specifications [17], [41], [42]. These so-called template
attacks combine one or more tunable execution primitives
that target a given resource. In [41], template attacks are
presented to exploit the cache as an information side channel.
An initial profiling phase adjusts attack parameters (e.g.,
access patterns) for the target platform before carrying out
the attack to extract information. “Slow and Steady” [17]
template attacks are extended to timing interference channels.
The authors propose a template for attacking the memory
hierarchy and explore multiple automated search techniques
to tune associated parameters. Fuzzing, which is the process
of finding vulnerabilities by repeatedly testing code with
modified inputs, is conceptually similar. In [43], the authors
present an approach for fuzzing via reinforcement learning
(RL) to optimize an attack.

Inspired by the template attacks and learning-based ap-
proaches of prior work, in this paper we propose a dynamic
attack template that is tuned in multiple phases, including by
an offline genetic algorithm (GA) and then through online RL.
GA [44] evolves parameter selections over a set of candidate
solutions, attempting to determine those most fit for a given
task. We will leverage GA for primitive tuning, since the
search space is large. For strategy tuning, we will leverage
deep deterministic policy gradient (DDPG) [45], [46], an RL
approach that inherits the advantages of both value-based [47]
and policy-based [48] methods: it is a model-free, off-policy
algorithm that uses an actor-critic framework. Unlike the Deep
Q Network [49], which handles only discrete states and cannot
efficiently solve large action spaces, DDPG is tractable for
high-dimensional, continuous action spaces.

III. SYSTEM AND THREAT MODEL

In this paper, we target implicit-deadline sporadic task sets
under fixed-priority preemptive scheduling. Task execution is
fully partitioned among cores as in [8], i.e., all instances
(jobs) of a given task are executed on the same set of
processors, and all processors are identical. In Section VIII,
we evaluate in the context of both individual jobs (profiling
single runs of a benchmark workload) and sporadic tasks

3

(measuring execution times in real-world applications with
recurrent execution). We assign fixed priorities to threads,
using rate-monotonic (RM) scheduling for sporadic tasks.

We consider task interference under three increasingly
strong threat models, illustrated in Figure 1. Common to all
three, we assume that the attacker and victim processes are
isolated into separate address spaces, with CPU core affinity
and memory access partitioning enforced by the operating
system or hypervisor, though the attacker and victim may
indirectly share the resources detailed in Sections IV and V.
Attacker processes execute without privileges, and so cannot
(1) modify a victim’s address space or access a victim’s
memory, (2) change its own, or a victim’s, CPU affinity, or
(3) modify task priorities, including its own.

OS / Hypervisor

Shared Hardware

1 2

Victim Attacker

(a) Separate Cores

OS / Hypervisor

Shared Hardware

Priority

High

Low

(b) Lower-Priority

OS / Hypervisor

Shared Hardware

Priority

High

Low

(c) Utilization Constraint

Fig. 1: Threat models considered in this work.

(a) Separate Cores: As shown in Figure 1(a), the attacker and
victim processes run on separate cores. The attacker may run
at an arbitrary priority relative to that of its victim, but cannot
directly preempt the victim’s execution. The attacker may
attempt to interfere with the victim’s timing through access
to shared resources and kernel functionality. Nonetheless, it
cannot modify its own, or the victim’s, priority.

(b) Same Core, Lower-Priority Attacker: In this scenario,
shown in Figure 1(b), the attacker and victim processes are on
the same processor core. The attacker has a lower priority than
any victim and thus can never preempt execution by a victim.
However, the attacker may increase the victim’s execution time
by carefully targeting shared hardware resources; it also may
attempt to block the victim through system calls and other
mechanisms that can induce priority inversion.

(c) Same Core, Utilization-Constrained Attacker: In the third
scenario we consider, illustrated in Figure 1(c), the attacker
and victim processes again reside on the same processor core.
This time, however, the attacker may be assigned a higher
priority than the victim (e.g., because the corresponding task
releases jobs at a higher rate). The attacker’s CPU utilization,
however, is constrained, e.g. via a budget server [50]. Given the
victim’s estimated WCET (appropriately padded for context
switching time), the attacker’s execution time is constrained
to a limit that guarantees system schedulability under the
hyperbolic bound [51]. Under this threat model, the attacker
may try to extend the victim’s WCET via the same interference

channels as under the previous threat model. It also may
attempt to induce frequent context switching, which can cause
interference as described in Section V-C.

IV. ARCHITECTURE ATTACK CHANNELS

PolyRhythm supplies an attack template that combines
multiple attack primitives over both hardware architectural
and operating system kernel channels, providing a general
framework that can be tuned to maximize resource contention.
A summary is given in Table 1 in Section VI. In this section,
we outline the targeted architectural channels, describe the
design and implementation of the corresponding attack prim-
itives, and characterize their associated tunable parameters.

A. Memory

Even with an operating system isolating memory between
processes, shared hardware introduces channels for contention.
These include the last-level cache; the common interconnect
bus and memory controller over which multiple cores compete
for access; and the DRAM row buffers for which memory
latency depends on whether they are holding the requested
data. PolyRhythm provides three attack primitives that target
these resources: cache, memory bandwidth, and row-buffer.

Cache: PolyRhythm can force last-level cache eviction, simi-
larly to the attack in [41]. This attack primitive initializes by
allocating an integer array with SIZE elements, then setting
the value of each element to its index. It continuously iterates
over the array, reading or writing elements according to the
policy defined by the ACCESS parameter. Its iteration step
is the number of cache lines specified by STRIDE, which
can be tuned so that subsequent cache misses require row
switching at the DRAM level, leading to inefficient processing
of requests [28]. In our online attack, we use cache profiling
to narrow the scope of the attack to eviction sets containing
victim data; this is described in more detail in Section VI-B.
Depending on the hardware architecture, this primitive may
also cause writeback buffer contention or blocking due to
exhaustion of the MSHRs [11]. While we do not identify
these scenarios explicitly, our tuning phases may induce such
behavior as a byproduct of optimizing the attack.

Memory Bandwidth: Using a primitive derived from the
memory contention stress test provided by stress-ng [52],
PolyRhythm can target the memory controller and interconnect
bus. The attack creates a file, then maps it into memory twice
(at two different addresses), using a mapping size of SIZE. It
then launches a number of threads specified by the NTHREADS
parameter; these threads each continuously run a procedure
that writes to then reads from the memory, depending on
the ACCESS parameter. Carefully-placed memory barriers and
cache line flushes ensure that the threads generate a high
volume of requests to the memory controller.

Row-Buffer: We target the DRAM row buffer using an attack
primitive derived from those in [10]. It dynamically allocates
two integer arrays of size SIZE, initializes each with random
values, then continually iterates over the arrays, copying and

4

modifying values between the two. Iteration is performed
either sequentially (with access separated by STRIDE indices)
or using a randomly-generated sequence of indices (which
remains consistent over each iteration), according to the pa-
rameter PATTERN. In doing so, we attempt to target each bank
in main memory, flushing the corresponding row buffer.

B. Translation Lookaside Buffer (TLB)

In this work, we consider three TLB levels which may be
present in different architectures: (1) a per-core L1 TLB that
is typically shot down by the kernel on every context switch;
(2) a per-core L2 TLB that provides a shared cache among
multiple processes on the same core;2 and (3) a last-level TLB
common to all cores.3 We consider two ways to induce TLB
contention: context-switching and page eviction attacks.

Context-Switching: A high-priority attacker, running on the
same core as a victim task, induces a high rate of context
switches (despite having its utilization constrained, as in threat
model (c) in Section III). This results in a high rate of L1 TLB
misses during victim execution, which can cause significant
delays. More details on this attack are given in Section V-C.

Page Eviction: To attack the L2 and last-level shared TLB,
PolyRhythm includes a primitive that continuously, in a loop,
maps a number of memory pages specified by the PAGES
parameter and zeroes the entire mapped region. It then iterates
over each page, marking the page read-only, copying the
contents of the page into a page-sized buffer on the stack, then
unmapping the page. This has the effect of evicting each page
from the TLB; given enough pages, the victim will experience
a high rate of TLB misses, forcing expensive hardware page
table traversals for each virtual memory access.

V. OPERATING SYSTEM ATTACK CHANNELS

In this section we outline operating system channels our
attack template can target, which augment the architectural
channels in Section IV, again describing the design and imple-
mentation of corresponding primitives and tunable parameters.

A. I/O Queues

As network and block devices have become faster, con-
tention for in-kernel I/O request queues may increase when
they are shared among multiple cores [34]. Where multiple
tasks compete for these resources, synchronization may cause
priority inversion and inflate blocking times (especially in
ordered queues without constant-time insertion). Additionally,
as queues grow longer, the latency between enqueueing and
handling a request induces delays. PolyRhythm’s attack tem-
plate includes primitives to target network and block devices.

Network: If a network controller is shared among multiple
cores, a kernel driver will enqueue packet transfer operations,

2These are present, for example, on the ARM Cortex-A72 in
the Raspberry Pi 4: https://developer.arm.com/documentation/100095/0002/
memory-management-unit/tlb-organization/l2-tlb

3The ARMv9 Cortex-A510 has an L2 TLB common to all cores: https:
//developer.arm.com/Processors/Cortex-A510. This architecture is not yet gen-
erally available at time of writing, so we defer evaluation to future work.

typically using only a single queue per address family. In many
operating systems, these queues are unaware of requesting
task priorities, which may introduce priority inversion [53].
Concurrent packet transmission from these queues also may
subsequently contend for lookups in a shared routing table.

To attack these points of contention, PolyRhythm provides
a primitive that produces a flood of UDP traffic to the local
loopback address, continuously sending packets containing a
random string of length SIZE. Because the attack may be
highly dependent on the ports and socket address families in
use by a specific victim application, these are selected online
in PolyRhythm’s second phase, as described in Section VI-B.
By targeting the local loopback only, this attack avoids the net-
work hardware, and instead focuses on associated kernel data
structures (which are still heavily used by many middleware
systems [54]–[56], even when intercomponent communication
remains on the same host). We defer a study of network
hardware contention, e.g. for its ability to induce delays in
distributed real-time systems, to future work.
Block Devices: I/O schedulers merge and reorder queued
operations to try to reduce latency and service requests fairly,
but this comes with tradeoffs: as the queue grows, overhead
induced by scheduler operations and blocking times induced
by synchronization over multiple cores may cause delays.
Additionally, as the number of requested transfers increases, so
too will the interrupts generated by the corresponding device.
On platforms where interrupt routines for a given device all
run on a single core, this can cause the performance of tasks
running on that core to degrade significantly.

PolyRhythm includes a primitive that produces a large
number of block I/O operations. It initializes by generating a
random string of length SIZE. It creates and opens a new file
with a randomly-generated name, declares an access pattern
by calling posix_fadvise() with advice specified by
the ADV parameter, and then continuously writes to the file
sequentially or in random locations according to PATTERN.
For a sequential access pattern, file access is separated by
an offset of STRIDE bytes. Each write is followed by a
call to fsync() to force the operating system’s page cache
to write back the dirty page. We tune these parameters to
maximize interference by, as much as possible, preventing file
readahead [57] and bypassing the kernel’s page cache to force
a large number of individual requests to the block device.

B. Kernel Data Structures
Operating system kernels also maintain shared data struc-

tures that must remain consistent among cores; increasing
contention for these structures may cause delays and priority
inversion, e.g., many kernels that provide a filesystem abstrac-
tion layer (such as the Linux VFS) use several locks to protect
shared state [39]. Other interference channels include shared
run queues, signaling and IPC endpoints, budget replenishment
queues, and timer queues [13]. PolyRhythm exploits these with
the following attack primitives: file system and fork bomb.
File System: PolyRhythm provides a primitive that targets
shared kernel data structures used by the filesystem abstrac-

5

https://developer.arm.com/documentation/100095/0002/memory-management-unit/tlb-organization/l2-tlb
https://developer.arm.com/documentation/100095/0002/memory-management-unit/tlb-organization/l2-tlb
https://developer.arm.com/Processors/Cortex-A510
https://developer.arm.com/Processors/Cortex-A510

tion layer. This attack is characterized by an ACCESS mode
parameter: create continually creates files; move creates a file
then continually renames it; delete runs in a loop, creating
then deleting files; reopen creates NFILES files and then
continually (re-)opens each one. Each version of the attack
uses randomly-generated filenames. Depending on the target
filesystem, contention can manifest differently: in Linux, for
example, these attacks may induce kernel-level contention for
acquisition of a global spin lock over the list of superblocks.

Fork Bomb: The PolyRhythm template includes a fork bomb
attack that continuously forks new processes (each with its
own address space) until NPROCS processes have been created.
This is exponential: each forked process runs the same fork
bomb routine. Such an attack rapidly consumes hardware
resources. Even with kernel-enforced resource constraints, a
rapid burst of thread creation may cause contention over the
kernel’s run queue, task or thread control block allocators, etc.
After the threads are active, their presence may cause schedul-
ing delays, as the run and wait queues grow in size [13].

C. Context-Switching

PolyRhythm provides a Context-Switching primitive that
continuously suspends the attacking thread for a number of
milliseconds defined by the DURATION parameter. If the
attacker is scheduled at a higher priority than a victim on
the same core, this forces rapid context switching between
processes. Even if the attacker’s CPU utilization is constrained
(as in threat model (c) of Section III) it can still: (1) decrease
available CPU utilization by increasing total context switching
time beyond what any WCET padding accommodates; (2)
increase contention for shared kernel data structures; (3) cause
incorrect in-kernel accounting of its own execution time,
allowing it to overrun its budget and thus deny service to
the victim; and (4) increase task execution times as various
hardware caches (e.g., the CPU cache and TLB) are refilled.

VI. ADAPTIVE MULTI-CHANNEL ATTACK TEMPLATE

PolyRhythm provides a three-phase dynamic attack template
that can combine primitives (described in Sections IV and V)
targeting multiple architectural and operating system channels
as illustrated in Figure 2. Each phase addresses a specific
challenge associated with keeping the attack both general (tar-
geting multiple platforms) and effective (maximizing induced
temporal interference):

(1) Platform-Dependent Attack Parameters: Each of
PolyRhythm’s primitives has associated parameters, summa-
rized in Table 1, for which optimal values depend strongly
on the target platform: even with reverse engineering, the
efficacy of the attack may remain unpredictable. To address
this challenge, in its first phase PolyRhythm executes an offline
genetic algorithm [44] to search the parameter space, tuning
the values to maximize delays over each individual resource.

(2) Unpredictable Resource Locality: Resource allocation
is often dynamic, both in hardware (e.g., placement of
cache lines) and the operating system (e.g., virtual-to-physical

memory mappings). This results in unpredictable locality of
the victim’s resource footprint. To address that challenge,
PolyRhythm’s second phase uses online search for regions of
the parameter space where contention is more likely to learn
where to target its attacks.

(3) Dynamic Execution Patterns: PolyRhythm does not as-
sume explicit knowledge of victim task execution patterns and
resource usage. Its targets may have unknown or dynamic con-
trol flows, which require online adaptation of attack strategies.
To address this challenge, PolyRhythm’s third phase uses a
trained reinforcement learning model to adjust selection of
running primitives to reactively optimize interference.

A. Platform-Dependent Parameter Tuning

Genetic algorithms are adaptive optimization heuristics in-
spired by natural selection [44] which have proven effective
for such applications as resource scheduling [58] and hyper-
parameter tuning [59]. A genetic algorithm (GA) can search
efficiently over a large domain [60], making it well suited
for optimization over the multidimensional space described
by PolyRhythm’s template parameters.

To optimize these parameters for a given platform, charac-
terized by both its architecture and OS, PolyRhythm begins
by running a GA on the target system. We denote each
template attack primitive as Ai, with associated parameters
ai,j . A parameterized attack primitive is scored according to
its interference potential Vi:

Vi =

m∑
k=1

wk × ϕk,i

ϕ0
k

(1)

Here, ϕk counts a performance event indicative of temporal
interference, and is normalized by ϕ0

k, the observed count
without interference. The profiled events for each primitive
are listed in Table 1. On platforms that do not support a given
event, execution time is measured instead. Each event is as-
signed a weight, wk, according to its relative ability to predict
delay. On low-power platforms with high variation [61]–[63]
(e.g., a Raspberry Pi), we assign weights according to the
stability of the event: wk = ϕ̄0

k/σ
0
k, with ϕ̄0

k the mean and σ0
k

the standard deviation of the event count without interference.
On more stable platforms (e.g., an Intel Nuc with hyper-
threading disabled), we instead weight according to the relative
impact of the primitive on each event: wk = ϕmax

k /ϕmin
k

– respectively, the maximum and minimum observed event
counts induced by different parameterized runs of the given
channel.

The GA tunes each primitive independently, finding the pa-
rameters that maximize its interference potential over represen-
tative victim workloads from the stress-ng and CortexSuite
benchmarks [52]. For every parameterized run of Ai, it mea-
sures (e.g., with perf) each associated event count ϕk,i from
the concurrently-running victim. We initialize the population
with an initial hand-picked set of parameter values, similarly
to the methodology in [11] (e.g., the SIZE and STRIDE may
be initialized according to the size of the last-level cache and

6

Execution
Time

Memory
Bandwidth

Network
Bandwidth

LLC
Misses

Disk
Bandwidth

Genetic
Algorithm

TLB
Misses

New Parameters

Performance & Resource
Measurements

Cache

Memory

Network

Block Dev.

TLB

Attack Execution

…

…

Attack StrategyStates

Platform-Dependent Parameters Tuning Online Contention Region Search Dynamic Spatio-Temporal Primitive Selection

RL Agent

Actor

Critic

Fig. 2: PolyRhythm Pipeline

Primitive Description Parameters Perf Events Phase 2

Cache Attack Force cache evictions SIZE, STRIDE, ACCESS LLC Misses ✓
Memory Bandwidth High volume of requests to main memory SIZE, NTHREADS, ACCESS LLC Misses,Bus Cycles ✓
DRAM Row Buffer Swaps and modifies values between two arrays SIZE, STRIDE, PATTERN LLC Misses,Bus Cycles ✓
TLB Page Eviction Maps, reads, and unmaps memory pages PAGES TLB Misses –

Network I/O Floods local loopback with UDP packets SIZE CPU Cycles ✓
Block Device I/O High rate of write operations to a block device SIZE, STRIDE, PATTERN, ADV CPU Cycles –

File System Contention over the file system abstraction layer NFILES, ACCESS CPU Cycles –
Fork Bomb Rapidly forks a large number of processes NPROCS CPU Cycles –

Context Switching Forces rapid context switching of victim DURATION CPU Cycles,Sched Switch –

TABLE 1: PolyRhythm Attack Template

cache line). The GA then runs until convergence, or until a
maximum number of generations have passed. For each gener-
ation, each member of the population is traced independently
to determine its interference potential, and then those having
the greatest potential are selected as candidate parents. In the
crossover step, each member of the subsequent generation is
assigned two parents by random selection from the candidates,
which are weighted exponentially by interference potential.
Each child’s parameter values are selected at random from
both parents, with no bias toward either.

For each generation gl, a subsequent mutation step intro-
duces stochastic noise to avoid converging on a local (rather
than global) maximum. For every member of the population,
each parameter is mutated with probability pl by adding a term
sampled from a normal distribution about 0 with a constant
standard deviation normalized to each parameter. The choice
of pl is significant: too low, and there may be insufficient
noise to escape local maxima; too high, and the excessive
randomization might prevent convergence. To address these
issues, we use an approach based on momentum mutation [64],
updating pl according to:

pl = µ · pl−1 +
α

|vl − vl−1|
, v0 = 0, p0 = 0.01 (2)

Here, µ = 0.9 is the scaling factor for the momentum’s run-
ning sum, α = 0.01 is the acceleration factor, and vl denotes
the maximum normalized interference potential among all
members of generation gl. By adding to the mutation probabil-
ity when a generation fails to adapt (i.e., when vl and vl−1 are
close in value), the algorithm can escape local maxima, with
the increase capped at 0.5. By maintaining a moving average
over prior updates, the probability is smoothed, making it less
susceptible to outliers in the population.

When the GA terminates, the member with the greatest
interference potential from the last generation is selected, and

its parameter values are assigned to the associated primitive.
Despite being specific to the platform on which they were
trained, these values may nevertheless generalize to other
platforms, and thus potentially could be used as inputs to
a PolyRhythm attack without running the offline parameter
search phase, or as initial inputs to that phase on that platform.

B. Online Contention Region Search

Even with parameters tuned for the target platform, varia-
tions in victim resource locality and random factors in run-
time allocation make for unpredictable attack efficacy. This is
highlighted by the results in Section VIII-B, which illustrates
that even with tuning, some attack channels are ineffective for
certain victim tasks, and by Section VIII-C, which illustrates
that the delay induced by a tuned cache attack can be highly
inconsistent across instances of a victim task. To address this,
PolyRhythm’s second phase is an online search for targeted
contention regions that overlap with victim resource locality,
relying on similar search techniques to those in [65], in which
an attack is constructed that targets small eviction sets in cache.
For many real-time applications, predictability of control flow
and memory footprint often imply that, once found, these
contention regions remain stable across task instances.

As discussed in Section III, no elevated privileges are
conferred to the attacker – PolyRhythm is presumed unable
to trace its victim’s resource usage via direct hardware or
kernel channels. Instead, it estimates locality using online
tracking of its own execution over different regions within
the search space, with semantics that depend on the individual
attack channel. The Phase 2 column of Table 1 indicates those
channels for which online search has been implemented.

Memory-Based Channels: For the cache attack primitive,
given a value of SIZE found by the GA, PolyRhythm partitions
the allocated memory of that size into several equal regions.

7

It then sequentially launches and profiles the execution time
of the attack primitive over each region while the victim
runs concurrently. Longer execution times indicate greater
contention over that region, suggesting that the region may
share underlying resources with the victim, based on its
allocation patterns. It runs with a fixed number of iterations; in
each iteration, it prunes the regions with the least contention,
then allocates new regions so that SIZE remains consistent.
The memory bandwidth and row buffer primitives execute over
two dynamically mapped or allocated regions of memory; at
each iteration, the region is remapped or reallocated. At the
end of the search, the pair of addresses indicating the greatest
contention are used for the remainder of the attack. After
performing this iterative pruning technique, we are left with
contention regions that form a more precise attack surface over
which we may induce a higher degree of interference with
victim response times.
Network I/O: Greater contention may be achieved when
targeting the network ports and address families used by the
victim task. PolyRhythm attempts to find the port and address
family combination indicative of the greatest contention. It
first enumerates the list of open ports (on Linux, it does so
by parsing the tcp and udp files in /proc/net, which
do not require special privileges to read), then runs the
network I/O attack across the cartesian product of those ports
and the {UNIX,INET,INET6,ALG} address families. The
(PORT,AF) pair with the slowest packet rate is assumed to
be the most effective for inducing delays in the victim task.

C. Dynamic Spatio-Temporal Primitive Selection
Armed with tuned parameters for its target hardware and

OS platform, as well as profiled sets describing an attack
surface that contends with the victim’s resource footprint,
the third piece of the puzzle is optimization of the spatio-
temporal selection of attack primitives. Victim control flows
and resource usage patterns are dynamic; PolyRhythm must
adaptively decide which attack primitive to run at each time
step. To this end, PolyRhythm executes its online attack using
an adaptive strategy based on reinforcement learning (RL). In
particular, given an initial system state s0, PolyRhythm will
perform a sequence of actions ai that optimize at each time
step t a reward function r of the system state st that indicates
its current interference with victim task execution:

argmax
a1,a2,...,at

r(st | s0, a1, a2, . . . , at) (3)

We represent this as a Markov decision process [66]: at
each time step t a policy selects an action at representing
one of the PolyRhythm template’s tuned attack primitives;
the attack is run for the duration of the time step, which
advances the process to the next step. This action returns a
reward r(st, at) characterized by the slowdown observed for
the attack primitive, which is indicative of the interference
induced on the victim.

To find the policy that maximizes the cumulative reward
over the entire process, we use the deep deterministic pol-
icy gradient (DDPG) framework [45], [46], as it does not

… …

S
o

ft
m

a
x

S
ta

te

R
e
L
U

R
e
L
U

Ta
n
h

Actor (π) Critic (Q)

B
N

B
N

……

A
c
ti
o

n
s

S
ta

te A
c
ti
o

n
s

F
e
a
tu

re
s

B
N

Q
-V

a
lu

e

C
o

n
c
a
t

OU-Noise

Fig. 3: Actor-Critic Network Architecture

require a priori knowledge of the environment’s dynamics,
and it is efficient over high-dimensional continuous action
spaces. DDPG is an actor-critic framework that composes
two neural networks: an actor network π learns an action
policy according to closed-loop feedback from a critic network
Q, which estimates the cumulative reward given the actor’s
observed policy. Because training is resource-intensive, if run
concurrently with the attacker and victim, it can affect the
observed behavior. To minimize the extent to which results
are skewed by the training, we use an offline hardware-in-the-
loop approach detailed in Section VIII.

The design of the actor (π) and critic (Q) networks is
illustrated in Figure 3. In both networks, we use three fully-
connected layers (a layer encoding the state, then two hidden
layers), each followed by batch normalization; all hidden
layers have 40 nodes. In π the final output vector has the
tanh and ReLU activation functions applied, followed by
a softmax. Ornstein-Uhlenbeck noise is added to the re-
sulting values, improving the efficiency and stability of the
search [67]. When training, the state and result action vectors
are passed to the Q network, which concatenates the action
vector with the normalized output of its second layer, using
this as input to the third layer. The ReLU activation function is
applied at the end to obtain the cumulative reward score, which
is used as feedback for the actor. PolyRhythm implements
its DDPG framework with PyTorch [68] and uses the same
hyperparameter values as FIRM [69]. By using a fine-grained
time step (discussed in Section VIII) and training using a
replay buffer with 105 entries to cache previous action/state
pairs, PolyRhythm is able to learn an attack action policy
targeting even a highly dynamic victim.

In its online attack, at each time step PolyRhythm runs the
highest-scored primitive on all targeted cores. The design of
our model supports a further expansion of this configuration in
which PolyRhythm may select different primitives for different
cores. However, we defer a more comprehensive study of
combinations over the design space to future work.

VII. IMPLEMENTATION

PolyRhythm’s implementation is composed of two parts: a
program, written primarily in C, that takes a set of template
parameters and runs the attack; and a set of scripts, written

8

primary in Python, that can launch the attack to tune its
parameters and train the DDPG model to perform spatio-
temporal primitive selection.

As described in Section VI-A, a Genetic Algorithm tunes
attack channel parameters for a target hardware and operating
system platform. The GA is implemented as a Python script
that independently tunes each primitive. On a system with n
processors, it concurrently launches n−1 instances of the first
PolyRhythm binary (specifying the current primitive), then
separately launches an instance of the representative victim
task, profiling it with perf. When the victim job completes,
the script terminates the PolyRhythm instances, then parses
the performance information to inform its next iteration. Once
the GA has run to completion, the script outputs the tuned
parameters, then proceeds to the next primitive.

The PolyRhythm attack program has two modes of exe-
cution. The first runs a specified attack primitive according
to specified parameters. The second mode runs one or more
PolyRhythm instances concurrently with the reinforcement-
learning model described in Section VI-C, synchronizing via
a shared memory region. Tuned parameters for all primitives
are provided via a text file. The RL script establishes a
periodic timer, and at each interval, it writes an attack template
into shared memory from a list generated by the DDPG
model. The PolyRhythm instances run the specified attack, at
each iteration checking if the selected primitive has changed
and writing back execution time statistics to shared memory,
which are used as feedback by the DDPG. Either PolyRhythm
attack mode can additionally be instructed to run the online
contention region search described in Section VI-B. If enabled,
the first several iterations of the attack primitive are used to
search for a more precise attack surface over which it may
induce a higher degree of interference with victim response
times. For those attack channels that do not implement the
online search, the behavior remains unchanged. When running
concurrently with the RL model, if a primitive switch occurs
before the search completes, state is saved so that the search
resumes next time it is invoked.

We provide a separate launcher program to launch the
PolyRhythm attack instances concurrently with the DDPG
script. Each child process can be pinned to a core and assigned
a fixed priority under the SCHED_RR scheduling class or a
runtime, deadline, and period under the SCHED_DEADLINE
priority class according to optional command-line parameters.
If either real-time scheduling class is used, the launcher
assigns itself scheduling attributes that allow it to preempt
its children, signals them by writing to a pipe, then executes
a shell (allowing the user to inspect or terminate any of the
child processes).

VIII. EVALUATION

PolyRhythm presents a dynamic attack template for inter-
ference on multicore systems. We evaluate it in the context
of recent work, comparing its effectiveness to the BwWrite
attack [11]. We also test the impact of each of PolyRhythm’s
three phases, attacking synthetic workloads and a real-world

SLAM system. We target five hardware platforms – the
Raspberry Pi 2B, 3B, and 4B, an Nvidia Jetson Nano, and
the Intel Nuc 8 – detailed in Table 2. The Nuc 8 kernel has
been patched to enable PREEMPT_RT. We disabled frequency
throttling on all devices, except where otherwise noted.

Platform Abbr Arch RAM Cores Linux HT

Raspberry Pi 2B RPi2 Cortex-A7 1GB 4 5.10
Raspberry Pi 3B RPi3 Cortex-A53 1GB 4 5.10
Raspberry Pi 4B RPi4 Cortex-A72 4GB 4 5.10
Nvidia Jetson Nano Nano Cortex-A57 4GB 4 4.9
Intel Nuc 8 Nuc Skylake 16GB 4 5.13 ✓

HT: Hyper-Threading.

TABLE 2: Evaluation Platforms

A. Phase 1: Parameters Tuned by the Genetic Algorithm

Comparison to BwWrite: To gauge the genetic algorithm
(GA) that PolyRhythm uses to tune attack template parameters,
we evaluate its cache attack primitive in the context of
the BwWrite attack from [11]. BwWrite similarly creates
contention in shared cache channels on multicore systems,
but its parameters are not tuned: it iterates using a cache line
stride length over a region of memory equal to the size of the
last-level cache. We launch concurrent attacker instances on
1, 2, and 3 cores, with a victim task pinned to its own core,
according to threat model (a) in Section III. We separately con-
sider three victim workloads from the CortexSuite benchmark
suite [70]: Disparity Map (disparity), which computes
depth information for objects jointly represented in a pair
of stereographic images; Maximally Stable Regions (mser),
which performs blob detection in images; and Support Vector
Machines (svm), which separates data into two categories. We
measure the relative victim slowdown induced by each attack,
taking the mean over 100 samples for each scenario.

In Figures 4(a) and (b), we compare the slowdowns induced
by PolyRhythm to those for BwWrite [11] on a Raspberry
Pi 2B and 3B respectively. Absent an identified kernel on
which to reproduce their approach, we use an up-to-date kernel
and compare our results to those reported in their paper. To
remain consistent with the previous work, we left frequency
throttling enabled for these experiments. For completeness,
we also compared the attacks on a Raspberry Pi 4B (also with
frequency throttling enabled). As the previous work did not
target this platform, all results illustrated in Figure 4(c) were
our own measurements. We observed that by using the GA
to tune its parameters for each target platform, PolyRhythm’s
cache attack primitive typically induces more interference than
BwWrite over the tested benchmarks. We observed that the
attacks were especially effective on the RPi3; this may be
due to MSHR contention, which is particularly mismatched in
speed to the rest of the memory pipeline on the RPi3.

Additionally, we observed that, when tuning both attacker
and victim parameters, PolyRhythm was able to induce a
maximum slowdown of 715× in these victim workloads on
the RPi3 with frequency throttling enabled; this is significantly
more than the maximum value reported for BwWrite (346×)

9

disparity mser svm0

1

2

3

4

5

6

Sl
ow

do
wn

(a) RPi2

80

90

100

110

120

Sl
ow

do
wn

1 Attacker-BwWrite
1 Attacker-PolyRhythm
2 Attackers-BwWrite
2 Attackers-PolyRhythm
3 Attackers-BwWrite
3 Attackers-PolyRhythm

disparity mser svm0

10

20

30

40

(b) RPi3

disparity mser svm0

1

2

3

4

5

Sl
ow

do
wn

(c) RPi4

Fig. 4: Relative Slowdowns Induced by BwWrite and PolyRhythm Attacks on CortexSuite Benchmarks

in [11]. Even for the same victim workload evaluated in [11],
PolyRhythm achieves a maximum 412× slowdown. This sug-
gests that hand-picked parameters based on known hardware
characteristics (e.g., cache size and cache line length) may
not perform as well as learned parameters; other hardware
factors besides the line and cache size affect the efficacy of the
attack. Additionally, it suggests that while parameters selected
for one platform could be ported another platform, tuning the
parameters for a specific target is highly effective. Compared
to previous work, PolyRhythm better captures the possible
interference among attacker and victim because it automates
the state space search over a target application and platform.

Comparison of Attack Channels: To quantify the sensitiv-
ity of each attack channel, we individually tuned (with the
GA) and evaluated several of PolyRhythm’s attack primitives
on each target platform, using stress-ng workloads [52] as
victim tasks. We target stress-cache with the cache
attack, stress-stream with the memory bandwidth and
row buffer attacks, stress-udp with the network I/O at-
tack, stress-io with the block device I/O attack, and
stress-brk with the TLB attack. As before, we run at-
tackers in parallel with the victim according to threat model
(a), and collect relative slowdown metrics for each test. The
maximum values observed for the RPi4, Nuc, and Nano are
illustrated in Figure 5.

We observe that the interference caused by primitives tar-
geting architectural channels vary significantly by platform.
For example, though both the RPi4 and Nano are ARM-based
and each has a shared L2 cache, the cache attack is far more
effective on the RPi4. Even primitives that target kernel-level
contention are highly dependent on hardware. We found that
on the RPi3 and Nuc, PolyRhythm was effective at causing
network contention; however, the tuned primitives had little
impact on the RPi2, RPi4, and Nano, despite sharing similar
operating system kernels. Further, block device I/O contention
was shown to be dependent on the storage medium: it was
effective on the Raspberry Pi devices and Jetson Nano, which
all use SD cards; the Nuc uses a faster solid state drive, and
was therefore only minimally affected.

As illustrated in Figure 5(b), Hyper-Threading opens a
channel for TLB interference. The bars labeled “TLB (no HT)”

indicate interference with Hyper-Threading disabled; relative
slowdowns are only barely greater than 1, even with three
parallel attackers. However, with Hyper-Threading enabled –
labeled “TLB (HT)” – slowdowns exceeded 2.7×, due to
multiple logical processors executing concurrently on a single
physical core, enabling contention over its TLB.

We also implemented the fork bomb and file system attack
primitives. These both were able to cause severe contention
issues, preventing us from even measuring the interference:
the file system attack caused the whole system to become
unresponsive, while the forkbomb attack was terminated by the
operating system after generating too many child processes.

To evaluate the stability of the GA, we tuned the parameters
for the cache primitive an additional 10 times on the RPi3.
Each time, the optimal STRIDE was found to be 1 cache line
and writing was determined as the optimal ACCESS mode.
Only the SIZE of the allocated region varied: the mean was
found to be 845.6kB, with a standard deviation of 38.2kB, less
than 5% of the mean.

B. Phase 2: Online Contention Region Search

PolyRhythm’s second phase searches online for targeted
contention regions that may overlap with resources used by
the victim. To gauge its effectiveness against different victim
workloads, we evaluate four primitives against a variety of
victim workloads. We run three PolyRhythm instances concur-
rently with a victim according to threat model (a). We again
find the mean relative slowdown over 100 iterations, which
are plotted in Figure 6. Values labeled “Tuned” represent the
slowdown observed with victim workloads also tuned for the
target platform; “Native” are for the victim workloads run
with default parameters. For a given workload, on a given
platform, we select the most effective attack (i.e., the one with
the greatest mean slowdown) and implement it in PolyRhythm
with an initial online search for contention regions. On the
Nuc, the attackers and victim are all launched on different
physical cores. The resulting slowdowns are illustrated by the
bars labeled “PolyRhythm” in the same figure.

On the platforms tested, GA-tuned cache attacks are often
the most effective. By searching online for contention regions
(which are likely eviction sets in this case), even more inter-
ference can be induced; on the RPi3, we found that targeting

10

Cache Mem. Band.Row Buffer Network Block Dev
ice TLB

0

1

2

3

4

5

6
Sl
ow

do
wn

1 Attacker
2 Attackers
3 Attackers

(a) RPi4

Cache Mem. Band.Row Buffer Network TLB (HT
)

TLB (no
 HT)

0

1

2

3

4

5

Sl
ow

do
wn

1 Attacker
2 Attackers
3 Attackers

(b) Nuc

15

20

25

30

Sl
ow

do
wn

1 Attacker
2 Attackers
3 Attackers

Cache Mem. Band.Row BufferNetworkBlock Dev
ice TLB

0

2

4

6

(c) Nano

Fig. 5: Maximum Relative Slowdowns Induced by PolyRhythm’s Tuned Primitives

100

120

Sl
ow

do
wn Tuned

Native

Cach
e
Row B

ufferNetw
ork Disk I

O
PolyR

hythm
0

10

(a) stress-cache on RPi3

Cach
e
Row B

ufferNetw
ork Disk I

O
PolyR

hythm
0

5

10

15

Sl
ow

do
wn

(b) stress-stream on RPi3

20

30

Sl
ow

do
wn

Cach
e
Row B

ufferNetw
ork Disk I

O
PolyR

hythm
0

2

(c) stress-udp on RPi3

20

40

Sl
ow

do
wn

Cach
e
Row B

ufferNetw
ork Disk I

O
PolyR

hythm
0

2

(d) stress-io on RPi3

Cach
e
Row B

ufferNetw
ork Disk I

O
PolyR

hythm
0

2

4

Sl
ow

do
wn

(e) stress-udp on Nuc

Cach
e
Row B

ufferNetw
ork Disk I

O
PolyR

hythm
0

1

2

3

Sl
ow

do
wn

(f) stress-cache on Nano

Fig. 6: Comparing Effectiveness of Online Contention Region Search

contention regions increased the slowdown by 2.5×. Even
though the cache attack was most effective against a network
workload on the RPi3, we found that a network attack is
most effective against the same workload on the Nuc. We
observed that PolyRhythm was able to find a contention region
over the domain of address families; targeting this forced the
associated socket domain to repeatedly trigger error handling
routines in the kernel’s network driver, which caused more
severe slowdown.

C. Phase 3: Dynamic Spatio-Temporal Primitive Selection

The synthetic workloads provided by stress-ng have highly
regular resource usage patterns; these are therefore not well
suited to evaluate the efficacy of PolyRhythm’s third phase,
which uses reinforcement learning to adapt to dynamic vic-
tims. Instead, we evaluate a full three-phase implementation of
PolyRhythm, targeting the ORB-SLAM robotic system [71],

[72] running over the EuRoC MAV dataset [73], which in-
cludes test videos taken by drones in real-world environments.

We run ORB-SLAM on the Nuc with a 50ms event loop in
the context of both threat models (b) and (c) of Section III. For
threat model (b), ORB-SLAM runs at priority 30 concurrently
with instances of PolyRhythm running at priority 20 and
pinned to each logical core. We separately test with Hyper-
Threading disabled and enabled, launching respectively 4
and 8 PolyRhythm instances. For (c), we disabled Hyper-
Threading and run ORB-SLAM at priority 20 concurrently
with 4 higher-priority instances of PolyRhythm, each pinned
to a distinct core, and each having its utilization constrained
to the minimum idle percentage of that CPU when ORB-
SLAM runs in isolation. Assigned budgets are 36%, 36%,
16%, and 55%; these are enforced with CBS under the
SCHED_DEADLINE scheduling class, using a period and
deadline of 50ms to match the ORB-SLAM event loop.
Because the SCHED_DEADLINE class is prioritized over
SCHED_RR, this guarantees that the attack threads preempt
the victim when their budget replenishes. Both scenarios may
also capture aspects of threat model (a), as ORB-SLAM might
not occupy all cores for the entirety of its execution.

We train the DDPG model via hardware-in-the-loop. A
host PC with a 12-core AMD Ryzen 9 3900X and 128GB
of RAM remotely launches PolyRhythm and the intended
victim task on the target platform. At each time step, the
remote machine runs the attack primitives (action steps) on
the target. The PolyRhythm processes on the target monitor
their state during action execution, sending feedback to the PC.
Once the RL model has been trained offline, it is included in
PolyRhythm’s online attack, which can then run independently
of the remote machine. We use a 5ms time step, which is
granular enough to capture distinct behavioral patterns within
ORB-SLAM’s subtasks, but remains long enough for each
individual primitive to run several iterations. To evaluate the
attack, the trained model runs at the highest priority (priority
90 for threat model (b), 5ms period and 1ms deadline for (c))
to guarantee that it preempts other execution.

ORB-SLAM main loop response times are illustrated in
Figure 7; shown are the mean values over every 10 loops
for execution across the entire dataset. We observe that,
without interference (labeled “Original”), ORB-SLAM never

11

0 500 1000 1500 2000 2500
Iteration Count

0

20

40

60

80
Ex

ec
ut
io
n
Ti
m
e
(m

s)
Original
Naive Cache
Online Tuning
RL Model
Deadline

(a) Threat model (b), Hyper-Threading disabled.

0 500 1000 1500 2000 2500
Iteration Count

0

20

40

60

80

Ex
ec

ut
io
n
Ti
m
e
(m

s)

(b) Threat model (b), Hyper-Threading enabled.

0 500 1000 1500 2000 2500
Iteration Count

0

20

40

60

80

Ex
ec

ut
io
n
Ti
m
e
(m

s)

(c) Threat model (c), Hyper-Threading disabled.

Fig. 7: DDPG-Based Dynamic Attack Against ORB-SLAM.

misses a deadline; the response time of its main loop remains
under the 50ms period. However, by interfering with ORB-
SLAM sufficiently to cause its response times to exceed 50ms,
PolyRhythm is able to induce overruns.

Under threat model (b) with Hyper-Threading disabled,
all three phases are necessary to make ORB-SLAM miss
its deadlines: PolyRhythm demonstrated an average delay
of 1.8× and induced a worst-case measured response time
of 58.6ms (compared to 31.8ms in the uncontended case).
Additionally, the DDPG model for primitive selection, when
combined with the online contention region search, produces
more delay than the naı̈ve cache attack 97.5% of the time. In
comparison, with Hyper-Threading enabled, the naı̈ve cache
attack alone can induce deadline misses. With all three phases,
ORB-SLAM’s worst-case measured response time is pushed to
120.0ms (compared to 47.1ms in the uncontended case), with
an average delay of 2.03×. Here, the DDPG model produces
more delay than the naı̈ve cache attack 98.3% of the time.
While the greater delays may be due in part to the additional
instances of PolyRhythm, the longer response times of ORB-
SLAM even in the uncontended case suggest that the global
scheduler might not be aware of the mapping of logical cores
to physical cores, resulting in suboptimal load balancing.

Under threat model (c) without Hyper-Threading,
PolyRhythm induces an average delay of 2.3× compared to
the uncontended case, and pushes ORB-SLAM’s worst-case
measured response time to 155.4ms from 32.5ms without
interference. Here the DDPG model produces more delay than
the naı̈ve cache attack 71.8% of the time. This suggests that
such attacks may be highly effective under this threat model,
since bandwidth reservations for the higher priority attacker
remain fixed, even as the victim’s demand for utilization
increases with execution time interference.

IX. DETECTABILITY AND DEFENSE

PolyRhythm or similar attacks may be effective at causing
missed deadlines in a real-time system, despite attempts to
detect it. In its attack phase, PolyRhythm uses all available
CPU time; in a real-time system where this execution is limited
by priority or server-based bandwidth constraints, execution
patterns may be similar to a task that runs for the extent of its
analyzed WCET. Because PolyRhythm’s resource usage does
not require any special privileges, its patterns may be difficult

to immediately distinguish from a non-malicious workload.
Once its execution profile becomes indicative of targeted
interference (e.g., identifying a high rate of cache misses),
the target workload may have already missed deadlines; as
illustrated in Figure 7, PolyRhythm was able to quickly
cause overruns in ORB-SLAM’s main loop, which may cause
collisions in autonomous systems [74].

A potential defense is to measure task execution times when
running concurrently with PolyRhythm, improving WCET
estimates by accounting for targeted interference. Still, mit-
igating multi-core interference is a long-standing challenge.
A traditional approach is to use resource isolation [75], [76]
to remove the attack surface. However, as we demonstrate,
several architectural and operating system channels expose
resource contention surfaces; it is therefore necessary to ver-
tically integrate isolation mechanisms across multiple system
layers. A more dynamic approach that remains robust uses
adaptive algorithms [77]–[79] or elastic scheduling [80]–[82],
where the fail-safe or operational-safe mechanisms can adjust
execution state in response to deadline misses.

X. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented PolyRhythm, a framework
for automated, multi-channel, templated resource contention
attacks. By abstracting a template of known resource con-
tention primitives, PolyRhythm can automatically tune their
associated parameters to a target platform and its runtime
environment, finding contention regions based on dynamic
placement of victim resources. It then searches for the opti-
mal spatio-temporal interference strategy using reinforcement
learning. Our evaluation shows both the feasibility and efficacy
of this approach. By fully open-sourcing this AI-aided tool
for interference measurement, we hope to complement exist-
ing methods to better characterize target workload/platform
susceptibility to adversarial interference, informing WCET
estimates, resulting in more secure and reliable real-time
systems. In future work, we intend to conduct a more com-
prehensive study of combinations over the design space and
target platforms, including applications in modern, complex
safety-critical and mixed-criticality systems.

12

REFERENCES

[1] G. A. Elliott, K. Yang, and J. H. Anderson, “Supporting real-time
computer vision workloads using openvx on multicore+gpu platforms,”
in 2015 IEEE Real-Time Systems Symposium, 2015, pp. 273–284.

[2] B. Williams, G. Klein, and I. Reid, “Real-time slam relocalisation,” in
2007 IEEE 11th International Conference on Computer Vision, 2007,
pp. 1–8.

[3] J. Kim, H. Kim, K. Lakshmanan, and R. Rajkumar, “Parallel scheduling
for cyber-physical systems: Analysis and case study on a self-driving
car,” in 2013 ACM/IEEE International Conference on Cyber-Physical
Systems (ICCPS), 2013, pp. 31–40.

[4] R. Bonatti, Z. Yanfu, S. Choudhury, W. Wang, and S. Scherer, “Au-
tonomous drone cinematographer: Using artistic principles to create
smooth, safe, occlusion-free trajectories for aerial filming,” in Pro-
ceedings of International Symposium on Experimental Robotics (ISER),
2018, pp. 119–129.

[5] R. Rao and S. Vrudhula, “Performance optimal processor throttling
under thermal constraints,” in Proceedings of the 2007 International
Conference on Compilers, Architecture, and Synthesis for Embedded
Systems, ser. CASES ’07. New York, NY, USA: Association
for Computing Machinery, 2007, p. 257–266. [Online]. Available:
https://doi.org/10.1145/1289881.1289925

[6] S. K. Baruah and N. W. Fisher, “The partitioned dynamic-
priority scheduling of sporadic task systems,” Real-Time Syst.,
vol. 36, no. 3, p. 199–226, aug 2007. [Online]. Available:
https://doi.org/10.1007/s11241-007-9022-5

[7] S. Baruah, “Partitioned edf scheduling: A closer look,” Real-Time
Syst., vol. 49, no. 6, p. 715–729, nov 2013. [Online]. Available:
https://doi.org/10.1007/s11241-013-9186-0

[8] J. Chen, “Partitioned multiprocessor fixed-priority scheduling of
sporadic real-time tasks,” in 2016 28th Euromicro Conference on
Real-Time Systems (ECRTS). Los Alamitos, CA, USA: IEEE
Computer Society, jul 2016, pp. 251–261. [Online]. Available:
https://doi.ieeecomputersociety.org/10.1109/ECRTS.2016.26

[9] G. Fernandez, J. Abella, E. Quiñones, C. Rochange, T. Vardanega, and
F. J. Cazorla, “Contention in Multicore Hardware Shared Resources:
Understanding of the State of the Art,” in 14th International Workshop
on Worst-Case Execution Time Analysis, ser. OpenAccess Series in
Informatics (OASIcs), H. Falk, Ed., vol. 39. Dagstuhl, Germany:
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2014, pp. 31–42.
[Online]. Available: http://drops.dagstuhl.de/opus/volltexte/2014/4602

[10] T. Moscibroda and O. Mutlu, “Memory performance attacks:
Denial of memory service in Multi-Core systems,” in 16th
USENIX Security Symposium (USENIX Security 07). Boston,
MA: USENIX Association, Aug. 2007. [Online]. Available:
https://www.usenix.org/conference/16th-usenix-security-symposium/
memory-performance-attacks-denial-memory-service-multi

[11] M. Bechtel and H. Yun, “Denial-of-service attacks on shared cache
in multicore: Analysis and prevention,” in 2019 IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS), 2019, pp.
357–367.

[12] S. A. Panchamukhi and F. Mueller, “Providing task isolation via tlb
coloring,” in 21st IEEE Real-Time and Embedded Technology and
Applications Symposium, 2015, pp. 3–13.

[13] S. Mergendahl, S. Jero, B. C. Ward, J. Furgala, G. Parmer, and
R. Skowyra, “The thundering herd: Amplifying kernel interference to
attack response times,” in 2022 IEEE 28th Real-Time and Embedded
Technology and Applications Symposium (RTAS), 2022, pp. 95–107.

[14] Q. Wang, J. Song, and G. Parmer, “Execution stack management for
hard real-time computation in a component-based os,” in 2011 IEEE
32nd Real-Time Systems Symposium, 2011, pp. 78–89.

[15] S. Baruah, J. Goossens, and G. Lipari, “Implementing constant-
bandwidth servers upon multiprocessor platforms,” in Proceedings.
Eighth IEEE Real-Time and Embedded Technology and Applications
Symposium, 2002, pp. 154–163.

[16] A. Lackorzyński, A. Warg, M. Völp, and H. Härtig, “Flattening
hierarchical scheduling,” in Proceedings of the Tenth ACM International
Conference on Embedded Software, ser. EMSOFT ’12. New York,
NY, USA: Association for Computing Machinery, 2012, p. 93–102.
[Online]. Available: https://doi.org/10.1145/2380356.2380376

[17] D. Iorga, T. Sorensen, J. Wickerson, and A. F. Donaldson, “Slow and
steady: Measuring and tuning multicore interference,” in 2020 IEEE

Real-Time and Embedded Technology and Applications Symposium
(RTAS), 2020, pp. 200–212.

[18] P. Radojković, S. Girbal, A. Grasset, E. Quiñones, S. Yehia, and
F. J. Cazorla, “On the evaluation of the impact of shared resources
in multithreaded cots processors in time-critical environments,” ACM
Trans. Archit. Code Optim., vol. 8, no. 4, jan 2012. [Online]. Available:
https://doi.org/10.1145/2086696.2086713

[19] H. Wang, N. C. Audsley, and W. Chang, “Addressing resource contention
and timing predictability for multi-core architectures with shared mem-
ory interconnects,” in 2020 IEEE Real-Time and Embedded Technology
and Applications Symposium (RTAS), 2020, pp. 70–81.

[20] W. Dally and B. Towles, “Route packets, not wires: on-chip inter-
connection networks,” in Proceedings of the 38th Design Automation
Conference (IEEE Cat. No.01CH37232), 2001, pp. 684–689.

[21] R. Pellizzoni and M. Caccamo, “Impact of peripheral-processor in-
terference on wcet analysis of real-time embedded systems,” IEEE
Transactions on Computers, vol. 59, no. 3, pp. 400–415, 2010.

[22] M. S. Inci, T. Eisenbarth, and B. Sunar, “Hit by the bus: Qos degradation
attack on android,” in Proceedings of the 2017 ACM on Asia Conference
on Computer and Communications Security, ser. ASIA CCS ’17. New
York, NY, USA: Association for Computing Machinery, 2017, p.
716–727. [Online]. Available: https://doi.org/10.1145/3052973.3053028

[23] D. Lee, L. Subramanian, R. Ausavarungnirun, J. Choi, and O. Mutlu,
“Decoupled direct memory access: Isolating cpu and io traffic by
leveraging a dual-data-port dram,” in 2015 International Conference on
Parallel Architecture and Compilation (PACT), 2015, pp. 174–187.

[24] O. Seongil, Y. H. Son, N. S. Kim, and J. H. Ahn, “Row-buffer
decoupling: A case for low-latency dram microarchitecture,” in 2014
ACM/IEEE 41st International Symposium on Computer Architecture
(ISCA), 2014, pp. 337–348.

[25] S. Blagodurov, S. Zhuravlev, M. Dashti, and A. Fedorova, “A case for
numa-aware contention management on multicore systems,” in Proceed-
ings of the 2011 USENIX Conference on USENIX Annual Technical
Conference, ser. USENIXATC’11. USA: USENIX Association, 2011,
p. 1.

[26] J. Liedtke, H. Hartig, and M. Hohmuth, “Os-controlled cache pre-
dictability for real-time systems,” in Proceedings Third IEEE Real-Time
Technology and Applications Symposium, 1997, pp. 213–224.

[27] D. Kroft, “Lockup-free instruction fetch/prefetch cache organization,” in
Proceedings of the 8th Annual Symposium on Computer Architecture,
ser. ISCA ’81. Washington, DC, USA: IEEE Computer Society Press,
1981, p. 81–87.

[28] M. Bechtel and H. Yun, “Memory-aware denial-of-service attacks on
shared cache in multicore real-time systems,” IEEE Transactions on
Computers, pp. 1–1, 2021.

[29] J. Gandhi, M. D. Hill, and M. M. Swift, “Agile paging: Exceeding
the best of nested and shadow paging,” in Proceedings of the
43rd International Symposium on Computer Architecture, ser. ISCA
’16. IEEE Press, 2016, p. 707–718. [Online]. Available: https:
//doi.org/10.1109/ISCA.2016.67

[30] I. Chukhman and P. Petrov, “Context-aware tlb preloading for
interference reduction in embedded multi-tasked systems,” in
Proceedings of the 20th Symposium on Great Lakes Symposium
on VLSI, ser. GLSVLSI ’10. New York, NY, USA: Association
for Computing Machinery, 2010, p. 401–404. [Online]. Available:
https://doi.org/10.1145/1785481.1785574

[31] S. Deng, W. Xiong, and J. Szefer, “Secure tlbs,” in Proceedings of the
46th International Symposium on Computer Architecture, ser. ISCA ’19.
New York, NY, USA: Association for Computing Machinery, 2019, p.
346–359. [Online]. Available: https://doi.org/10.1145/3307650.3322238

[32] N. Zhang, K. Sun, D. Shands, W. Lou, and Y. T. Hou, “Truspy: Cache
side-channel information leakage from the secure world on arm devices,”
Cryptology ePrint Archive, 2016.

[33] Q. Ge, Y. Yarom, T. Chothia, and G. Heiser, “Time protection:
The missing os abstraction,” in Proceedings of the Fourteenth
EuroSys Conference 2019, ser. EuroSys ’19. New York, NY, USA:
Association for Computing Machinery, 2019. [Online]. Available:
https://doi.org/10.1145/3302424.3303976

[34] M. Bjørling, J. Axboe, D. Nellans, and P. Bonnet, “Linux block io: intro-
ducing multi-queue ssd access on multi-core systems,” in Proceedings
of the 6th international systems and storage conference, 2013, pp. 1–10.

[35] Q. Huang and P. P. Lee, “An experimental study of cascading
performance interference in a virtualized environment,” SIGMETRICS

13

https://doi.org/10.1145/1289881.1289925
https://doi.org/10.1007/s11241-007-9022-5
https://doi.org/10.1007/s11241-013-9186-0
https://doi.ieeecomputersociety.org/10.1109/ECRTS.2016.26
http://drops.dagstuhl.de/opus/volltexte/2014/4602
https://www.usenix.org/conference/16th-usenix-security-symposium/memory-performance-attacks-denial-memory-service-multi
https://www.usenix.org/conference/16th-usenix-security-symposium/memory-performance-attacks-denial-memory-service-multi
https://doi.org/10.1145/2380356.2380376
https://doi.org/10.1145/2086696.2086713
https://doi.org/10.1145/3052973.3053028
https://doi.org/10.1109/ISCA.2016.67
https://doi.org/10.1109/ISCA.2016.67
https://doi.org/10.1145/1785481.1785574
https://doi.org/10.1145/3307650.3322238
https://doi.org/10.1145/3302424.3303976

Perform. Eval. Rev., vol. 40, no. 4, p. 43–52, apr 2013. [Online].
Available: https://doi.org/10.1145/2479942.2479948

[36] T. Zhang and R. B. Lee, “Host-based dos attacks and defense in the
cloud,” in Proceedings of the Hardware and Architectural Support
for Security and Privacy, ser. HASP ’17. New York, NY, USA:
Association for Computing Machinery, 2017. [Online]. Available:
https://doi.org/10.1145/3092627.3092630

[37] V. Varadarajan, T. Kooburat, B. Farley, T. Ristenpart, and M. M. Swift,
“Resource-freeing attacks: Improve your cloud performance (at your
neighbor’s expense),” in Proceedings of the 2012 ACM Conference on
Computer and Communications Security, ser. CCS ’12. New York,
NY, USA: Association for Computing Machinery, 2012, p. 281–292.
[Online]. Available: https://doi.org/10.1145/2382196.2382228

[38] S. Boyd-Wickizer, A. T. Clements, Y. Mao, A. Pesterev, M. F. Kaashoek,
R. Morris, and N. Zeldovich, “An analysis of linux scalability to many
cores,” in 9th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 10), 2010.

[39] S. Boyd-Wickizer, M. F. Kaashoek, R. Morris, and N. Zeldovich, “Non-
scalable locks are dangerous,” in Proceedings of the Linux Symposium,
2012, pp. 119–130.

[40] Q. Wang, Y. Ren, M. Scaperoth, and G. Parmer, “Speck: a kernel for
scalable predictability,” in IEEE Real-Time and Embedded Technology
and Applications Symposium (RTAS), 2015, pp. 121–132.

[41] D. Gruss, R. Spreitzer, and S. Mangard, “Cache template attacks:
Automating attacks on inclusive {Last-Level} caches,” in 24th USENIX
Security Symposium (USENIX Security 15), 2015, pp. 897–912.

[42] N. Zhang, R. Zhang, K. Sun, W. Lou, Y. T. Hou, and S. Jajodia,
“Memory forensic challenges under misused architectural features,”
IEEE Transactions on Information Forensics and Security, vol. 13, no. 9,
pp. 2345–2358, 2018.

[43] K. Böttinger, P. Godefroid, and R. Singh, “Deep reinforcement fuzzing,”
in 2018 IEEE Security and Privacy Workshops (SPW), 2018, pp. 116–
122.

[44] K. A. De Jong, “An analysis of the behavior of a class of genetic
adaptive systems.” Ph.D. dissertation, University of Michigan, USA,
1975, aAI7609381.

[45] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforcement
learning,” in 4th International Conference on Learning Representations,
ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track
Proceedings, Y. Bengio and Y. LeCun, Eds., 2016. [Online]. Available:
http://arxiv.org/abs/1509.02971

[46] ——, “Continuous control with deep reinforcement learning,” 2015.
[Online]. Available: https://arxiv.org/abs/1509.02971

[47] K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A. Bharath,
“Deep reinforcement learning: A brief survey,” IEEE Signal Processing
Magazine, vol. 34, no. 6, pp. 26–38, 2017.

[48] R. S. Sutton, D. McAllester, S. Singh, and Y. Mansour, “Policy gradient
methods for reinforcement learning with function approximation,” in
Proceedings of the 12th International Conference on Neural Information
Processing Systems, ser. NIPS’99. Cambridge, MA, USA: MIT Press,
1999, p. 1057–1063.

[49] C. J. C. H. Watkins and P. Dayan, “Q-learning,” Machine Learning,
vol. 8, no. 3, pp. 279–292, May 1992. [Online]. Available:
https://doi.org/10.1007/BF00992698

[50] B. Sprunt, “Aperiodic task scheduling for real-time systems,” Carnegie
Mellon University, Tech. Rep., 1990.

[51] E. Bini, G. Buttazzo, and G. Buttazzo, “Rate monotonic analysis: the
hyperbolic bound,” IEEE Transactions on Computers, vol. 52, no. 7, pp.
933–942, 2003.

[52] C. King, “stress-ng,” https://wiki.ubuntu.com/Kernel/Reference/
stress-ng, Canonical, accessed: May 20, 2022.

[53] C. Li, S. Xi, C. Lu, C. D. Gill, and R. Guerin, “Prioritizing soft real-time
network traffic in virtualized hosts based on xen,” in 21st IEEE Real-
Time and Embedded Technology and Applications Symposium, 2015, pp.
145–156.

[54] V. Subramonian, N. Wang, L.-J. Shen, and C. Gill, “The design and
performance of configurable component middleware for distributed real-
time and embedded systems,” in IEEE Real-Time Systems Symposium
(RTSS), December 2004, pp. 252–261.

[55] I. Kuz, Y. Liu, I. Gorton, and G. Heiser, “Camkes: A component model
for secure microkernel-based embedded systems,” Journal of Systems
and Software, vol. 80, no. 5, pp. 687––699, May 2007.

[56] S. Macenski, T. Foote, B. Gerkey, C. Lalancette, and W. Woodall,
“Robot operating system 2: Design, architecture, and uses in the wild,”
Science Robotics, vol. 7, no. 66, p. eabm6074, 2022. [Online]. Available:
https://www.science.org/doi/abs/10.1126/scirobotics.abm6074

[57] W. Fengguang, X. Hongsheng, and X. Chenfeng, “On the design
of a new linux readahead framework,” SIGOPS Oper. Syst. Rev.,
vol. 42, no. 5, p. 75–84, jul 2008. [Online]. Available: https:
//doi.org/10.1145/1400097.1400106

[58] Z. Zheng, R. Wang, H. Zhong, and X. Zhang, “An approach for cloud
resource scheduling based on parallel genetic algorithm,” in 2011 3rd
International conference on computer research and development, vol. 2.
IEEE, 2011, pp. 444–447.

[59] H. Alibrahim and S. A. Ludwig, “Hyperparameter optimization: Com-
paring genetic algorithm against grid search and bayesian optimization,”
in 2021 IEEE Congress on Evolutionary Computation (CEC), 2021, pp.
1551–1559.

[60] S. Katoch, S. S. Chauhan, and V. Kumar, “A review on genetic algorithm:
past, present, and future,” Multimedia Tools and Applications, vol. 80,
no. 5, pp. 8091–8126, 2021.

[61] D. Zaparanuks, M. Jovic, and M. Hauswirth, “Accuracy of performance
counter measurements,” in 2009 IEEE International Symposium on
Performance Analysis of Systems and Software. IEEE, 2009, pp. 23–32.

[62] V. M. Weaver and S. A. McKee, “Can hardware performance counters
be trusted?” in 2008 IEEE International Symposium on Workload
Characterization. IEEE, 2008, pp. 141–150.

[63] V. M. Weaver, D. Terpstra, and S. Moore, “Non-determinism and
overcount on modern hardware performance counter implementations,”
in 2013 IEEE International Symposium on Performance Analysis of
Systems and Software (ISPASS). IEEE, 2013, pp. 215–224.

[64] R. Taori, A. Kamsetty, B. Chu, and N. Vemuri, “Targeted adversarial
examples for black box audio systems,” in 2019 IEEE security and
privacy workshops (SPW). IEEE, 2019, pp. 15–20.

[65] P. Vila, B. Köpf, and J. F. Morales, “Theory and practice of finding
eviction sets,” in 2019 IEEE Symposium on Security and Privacy (SP).
IEEE, 2019, pp. 39–54.

[66] E. Feinberg, “Total reward criteria. feinberg ea, shwartz a, eds. handbook
of markov decision processes,” 2002.

[67] P. Cheridito, H. Kawaguchi, and M. Maejima, “Fractional ornstein-
uhlenbeck processes,” Electronic Journal of probability, vol. 8, pp. 1–14,
2003.

[68] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf,
E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala, “Pytorch: An imperative style, high-
performance deep learning library,” in Advances in Neural Information
Processing Systems, H. Wallach, H. Larochelle, A. Beygelzimer,
F. d'Alché-Buc, E. Fox, and R. Garnett, Eds., vol. 32. Curran
Associates, Inc., 2019. [Online]. Available: https://proceedings.neurips.
cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf

[69] H. Qiu, S. S. Banerjee, S. Jha, Z. T. Kalbarczyk, and R. K. Iyer,
“FIRM: An intelligent fine-grained resource management framework
for SLO-Oriented microservices,” in 14th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 20).
USENIX Association, Nov. 2020, pp. 805–825. [Online]. Available:
https://www.usenix.org/conference/osdi20/presentation/qiu

[70] S. K. Venkata, I. Ahn, D. Jeon, A. Gupta, C. Louie, S. Garcia,
S. Belongie, and M. B. Taylor, “Sd-vbs: The san diego vision benchmark
suite,” in 2009 IEEE International Symposium on Workload Character-
ization (IISWC). IEEE, 2009, pp. 55–64.

[71] C. Campos, R. Elvira, J. J. G. Rodrı́guez, J. M. M. Montiel, and
J. D. Tardós, “Orb-slam3: An accurate open-source library for visual,
visual–inertial, and multimap slam,” IEEE Transactions on Robotics,
vol. 37, no. 6, pp. 1874–1890, 2021.

[72] “Orb-slam3,” https://github.com/UZ-SLAMLab/ORB SLAM3, Univer-
sidad de Zaragoza, accessed: May 20, 2022.

[73] M. Burri, J. Nikolic, P. Gohl, T. Schneider, J. Rehder, S. Omari, M. W.
Achtelik, and R. Siegwart, “The euroc micro aerial vehicle datasets,”
The International Journal of Robotics Research, vol. 35, no. 10, pp.
1157–1163, 2016.

[74] A. Li, J. Wang, and N. Zhang, “Chronos: Timing interference as a new
attack vector on autonomous cyber-physical systems,” in Proceedings of
the 2021 ACM SIGSAC Conference on Computer and Communications
Security, 2021, pp. 2426–2428.

14

https://doi.org/10.1145/2479942.2479948
https://doi.org/10.1145/3092627.3092630
https://doi.org/10.1145/2382196.2382228
http://arxiv.org/abs/1509.02971
https://arxiv.org/abs/1509.02971
https://doi.org/10.1007/BF00992698
https://wiki.ubuntu.com/Kernel/Reference/stress-ng
https://wiki.ubuntu.com/Kernel/Reference/stress-ng
https://www.science.org/doi/abs/10.1126/scirobotics.abm6074
https://doi.org/10.1145/1400097.1400106
https://doi.org/10.1145/1400097.1400106
https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://www.usenix.org/conference/osdi20/presentation/qiu
https://github.com/UZ-SLAMLab/ORB_SLAM3

[75] J. Wang, A. Li, H. Li, C. Lu, and N. Zhang, “Rt-tee: Real-time system
availability for cyber-physical systems using arm trustzone,” in 2022
IEEE Symposium on Security and Privacy (SP). IEEE Computer
Society, 2022, pp. 1573–1573.

[76] M. Xu, L. T. X. Phan, H.-Y. Choi, Y. Lin, H. Li, C. Lu, and I. Lee,
“Holistic resource allocation for multicore real-time systems,” in 2019
IEEE Real-Time and Embedded Technology and Applications Sympo-
sium (RTAS). IEEE, 2019, pp. 345–356.

[77] A. Li, H. Liu, J. Wang, and N. Zhang, “From timing variations to perfor-
mance degradation: Understanding and mitigating the impact of software
execution timing in slam,” in IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 2022.

[78] P. Pazzaglia, C. Mandrioli, M. Maggio, and A. Cervin, “Dmac: Deadline-
miss-aware control,” in 31st Euromicro Conference on Real-Time Sys-
tems (ECRTS 2019). Schloss Dagstuhl-Leibniz-Zentrum fuer Infor-
matik, 2019.

[79] I. Gog, S. Kalra, P. Schafhalter, J. E. Gonzalez, and I. Stoica,
“D3: A dynamic deadline-driven approach for building autonomous
vehicles,” in Proceedings of the Seventeenth European Conference
on Computer Systems, ser. EuroSys ’22. New York, NY, USA:
Association for Computing Machinery, 2022, p. 453–471. [Online].
Available: https://doi.org/10.1145/3492321.3519576

[80] J. Orr, C. Gill, K. Agrawal, J. Li, and S. Baruah, “Elastic scheduling
for parallel real-time systems,” Leibniz Transactions on Embedded
Systems, vol. 6, no. 1, p. 05:1–05:14, 5 2019. [Online]. Available: https:
//ojs.dagstuhl.de/index.php/lites/article/view/LITES-v006-i001-a005

[81] J. Orr, C. Gill, K. Agrawal, S. Baruah et al., “Elasticity of
workloads and periods of parallel real-time tasks,” in Proceedings
of the 26th International Conference on Real-Time Networks and
Systems, ser. RTNS ’18. New York, NY, USA: Association
for Computing Machinery, 2018, pp. 61–71. [Online]. Available:
https://doi.org/10.1145/3273905.3273915

[82] M. Sudvarg, C. Gill, and S. Baruah, “Linear-time admission control for
elastic scheduling,” Real-Time Systems, vol. 57, no. 4, pp. 485–490, 10
2021. [Online]. Available: https://doi.org/10.1007/s11241-021-09373-4

15

https://doi.org/10.1145/3492321.3519576
https://ojs.dagstuhl.de/index.php/lites/article/view/LITES-v006-i001-a005
https://ojs.dagstuhl.de/index.php/lites/article/view/LITES-v006-i001-a005
https://doi.org/10.1145/3273905.3273915
https://doi.org/10.1007/s11241-021-09373-4

	Introduction
	Background and Related Work
	Architectural Channels
	Operating System Channels
	Tunable Attack Templates

	System and Threat Model
	Architecture Attack Channels
	Memory
	Translation Lookaside Buffer (TLB)

	Operating System Attack Channels
	I/O Queues
	Kernel Data Structures
	Context-Switching

	Adaptive Multi-Channel Attack Template
	Platform-Dependent Parameter Tuning
	Online Contention Region Search
	Dynamic Spatio-Temporal Primitive Selection

	Implementation
	Evaluation
	Phase 1: Parameters Tuned by the Genetic Algorithm
	Phase 2: Online Contention Region Search
	Phase 3: Dynamic Spatio-Temporal Primitive Selection

	Detectability and Defense
	Conclusions and Future Work
	References

