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Abstract—Prior algorithms that have been proposed for the
uniprocessor scheduling of systems of elastic real-time tasks have
computational complexity quadratic (O(n2)) in the number of
tasks n, for both initialization and for admitting new tasks during
run-time. In our work-already-published [1], we present a more
efficient implementation in which initialization takes quasilinear
(O(n logn)), and on-line admission control, linear (O(n)), time.

I. BACKGROUND

The elastic recurrent real-time workload model [2], [3]
provides a framework for dealing with overload by com-
pressing (i.e., reducing) the effective utilizations of individual
tasks until the cumulative utilization falls below the utilization
bound that can be accommodated. For example, an overloaded
multimedia system might reduce its sampling or frame rates.

Each task τi = (Umin
i , Umax

i , Ei) is characterized by the
minimum utilization Umin

i that it must be provided and the
maximum utilization Umax

i that it is able to achieve, as well
as an elasticity parameter Ei that “specifies the flexibility
of the task to vary its utilization” [2]. Given a system
Γ = {τ1, τ2, . . . , τn} of n such elastic tasks, the objective
is to assign each task τi a utilization Ui, Umin

i ≤ Ui ≤ Umax
i ,

such that (1)
∑n

i=1 Ui is as large as possible but bounded from
above by a specified constant Ud which denotes the maximum
cumulative utilization that can be accommodated; and (2) if
Ui > Umin

i and Uj > Umin
j then Ui and Uj must satisfy the

relationship1

(
Umax
i − Ui

Ei

)
=

(
Umax
j − Uj

Ej

)
(1)

A task system Γ for which such Ui exist for all the tasks is
said to be feasible.

A feasible task system with Ei > 0 for all tasks2 τi ∈ Γ may
be partitioned into two classes ΓVARIABLE (those tasks for which
Ui > Umin

i , and which can therefore have their utilizations
“varied” –compressed– further if necessary) and ΓFIXED (those
for which Ui = Umin

i ; i.e., their utilizations are now “fixed”).
It has been shown [2, Eqn (8)] that for each τi ∈ ΓVARIABLE

1For tasks τi having Ei = 0, Ui = Umin
i = Umax

i , and therefore the
relationship needs not be satisfied.

2All tasks τi with Ei = 0 must have Ui ← Umax
i ; we assume this is done

in a pre-processing step, and the value of Ud updated to reflect the remaining
available utilization.

Ui = Umax
i −

(
USUM − (Ud −∆)

ESUM

)
× Ei (2)

where USUM and ESUM respectively denote the sum of the Umax
i

parameters and the Ei parameters of all the tasks in ΓVARIABLE,
and ∆ denotes the sum of the Umin

i parameters of all the tasks
in ΓFIXED.3

Given a set of elastic tasks thus partitioned, the algorithm
of [2, Fig. 3] determines feasibility and assigns Ui values.
It starts by computing Ui values for the tasks assuming
that they are all in ΓVARIABLE — i.e., their Ui values are
computed according to Expression 2. If any Ui so computed
is observed to be smaller than the corresponding Umin

i then
that task is moved from ΓVARIABLE to ΓFIXED, the values of
USUM, ESUM, and ∆ are updated to reflect this transfer, and Ui

values recomputed for all the tasks. The process terminates
if no computed Ui value is observed to be smaller than the
corresponding Umin

i . It is easily seen that one such iteration
(i.e., computing Ui values for all the tasks) takes O(n) time.
Since an iteration is followed by another only if some task
is moved from ΓVARIABLE to ΓFIXED and there are n tasks, the
number of iterations is bounded from above by n. The overall
running time for the algorithm is therefore O(n2).

This same algorithm was also repurposed in [2] for admis-
sion control: for determining whether a new task seeking to
join an already-executing system could be admitted without
compromising feasibility, and if so, recomputing the utilization
values for the new task as well as for all preëxisting ones.

Extensions to elastic scheduling that were proposed by
Chantem et al. [4], [5] reformulate the problem of determining
the utilizations as a quadratic programming problem. This
allows the iterative technique in [2] to be applied to a more
general class of problems, including systems of constrained-
deadline, elastic tasks. However, this reformulation continues
to have quadratic time-complexity.

3Observe that ∆ equals the amount of utilization that is allocated to the
tasks in ΓFIXED; therefore (Ud − ∆) represents the amount available for
the tasks in ΓVARIABLE , and

(
USUM − (Ud − ∆)

)
the amount by which the

cumulative utilizations of these tasks must be reduced from their desired
maximums. As shown in the RHS of Expression 2, under elastic scheduling
this reduction is shared amongst the tasks in proportion to their elasticity
parameters: τi’s share is (Ei/ESUM).



II. OVERVIEW OF WORK-ALREADY-PUBLISHED

In our work-already-published [1], we define the attribute
φi for an elastic task τi as follows:

φi
def
=

(
Umax
i − Umin

i

Ei

)
(3)

In [1, Theorem 1], we prove a result that allows us to
conclude that in the algorithm of [2, Fig. 3], tasks may
be “moved” from ΓVARIABLE to ΓFIXED in order of their φi
parameters. Intuitively, φi is analogous to the amount of force
on the spring system of [2] that induces compression on spring
i to exactly its length constraint.

Assuming that the tasks are indexed in a linked list such that
φi ≤ φi+1 for all i, 1 ≤ i < n, we can then simply make a
single pass through all the tasks from τ1 to τn, identifying, and
computing Ui values for, all the ones in ΓFIXED before any of
the ones in ΓVARIABLE. With appropriate book-keeping (see the
pseudo-code already published in [1, Algorithm 1]) this can all
be done in a single pass in O(n) time. The cost of sorting the
tasks in order to arrange them according to non-increasing φi
parameters is O(n log n), and hence dominates the overall run-
time complexity: determining feasibility and computing the Ui

parameters can be done in O(n log n) + O(n) = O(n log n)
time.4

Admission control – determining whether it is safe to add a
new task and recomputing all the Ui parameters if so – requires

that the new task be inserted at the appropriate location in
the already sorted list of preëxisting tasks — this can be
achieved in O(n) time. Once this is done, the Ui values
can be recomputed in O(n) time by the pseudo-code already
published in [1, Algorithm 1]. Similarly, removing a task
from the system and recomputing the Ui values also takes
O(n) time since sorting is not needed.

In summary, our work-already-published [1] presents a
more efficient implementation of the algorithm of [2, Fig. 3]
that determines feasibility and computes the Ui values in
O(n log n) time, and performs admission control in O(n) time.
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4While we considered the problem of implicit-deadline, elastic tasks,
our improved algorithm solves the general class of optimization problems
described in [4], and could therefore be applied to constrained-deadline task
systems as well.


