Linear Time Admission Control for Elastic Scheduling

Work Already Published
Marion Sudvarg, Chris Gill, Sanjoy Baruah
Real-Time Systems **57**, 485–490 (2021)
Presented by Marion Sudvarg
RTSS 2021

This work was funded by the United States National Science Foundation.

Overview

- Elastic scheduling is a model for compressing task utilizations in an overloaded system
- The original algorithm* performs compression in time quadratic in the number of tasks
- In this work, we present an implementation that, with O(n log n) initialization, performs compression for online task admission in linear time

^{*} Giorgio C. Buttazzo, Giuseppe Lipari, and Luca Abeni. "Elastic task model for adaptive rate control." RTSS 1998.

Review of the Original Algorithm

Each task τ_i characterized by:

- U_i^{max} : Initial, uncompressed utilization
- **E**_i: Elasticity, flexibility to vary utilization
- U_i^{min} : Constraint on minimum utilization

System global variables:

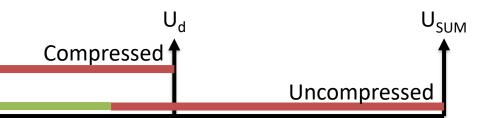
- E_{SUM}: Total elasticity (sum of E_i)
- \mathbf{U}_{SUM} : Initial total utilization (sum of U_i^{max})
- **U**_d: Desired total utilization

During overload, total required compression is $U_{\text{SUM}} - U_{\text{d}}$

Algorithm

1. Compress each task's utilization proportionally to its elasticity:

$$U_{i} = U_{i}^{max} - (U_{SUM} - U_{d}) \frac{E_{i}}{E_{SUM}}$$


- 2. While any task τ_i has $U_i < U_i^{min}$:
 - a. Set $U_i = U_i^{min}$
 - b. Repeat from 1

Improved Compression Algorithm

Initialization: Sort tasks in a list according to $\phi_i = \frac{U_i^{max} - U_i^{min}}{\mathsf{E}_i}$

Task Admission:

- 1. Insert new task τ_j according to \emptyset_j
- 2. For each task τ_i :
 - a. Compress according to $U_i = U_i^{max} (U_{SUM} U_d) \frac{E_1}{E_{SUM}}$
 - b. Is $U_i < U_i^{min}$?
 - c. If so, set $U_i = U_i^{min}$
 - d. If not, no remaining task will have $U_i < U_i^{min}$, and so compress normally

Conclusions

- We have presented a new algorithm for elastic compression, which improves on the prior O(n²) algorithm:
- It requires one-time O(n log n) initialization to sort tasks
- Enables new task admission and compression in O(n) time
- If a task leaves, it is removed from the (still sorted) list, allowing decompression in O(n) time
- Questions? msudvarg@wustl.edu
- Sudvarg, M., Gill, C. & Baruah, S. Linear-time admission control for elastic scheduling. Real-Time Systems 57, 485–490 (2021)