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Abstract
Prior algorithms that have been proposed for the uniprocessor implementation of 
systems of elastic tasks have computational complexity quadratic ( O(n2) ) in the 
number of tasks n, for both initialization and for admitting new tasks during run-
time. We present a more efficient implementation in which initialization takes quasi-
linear ( O(n log n) ), and on-line admission control, linear (O(n)), time.
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1 Introduction

The elastic recurrent real-time workload model  (Buttazzo et  al. 1998, 2002) pro-
vides a framework for dealing with overload by compressing (i.e., reducing) the 
effective utilizations of individual tasks until the cumulative utilization falls below 
the utilization bound that can be accommodated. Each task �i = (Umin

i
,Umax

i
,Ei) is 

characterized by the minimum amount of utilization Umin
i

 that it must be provided 
and the maximum amount Umax

i
 that it is able to use, as well as an additional elastic-

ity parameter Ei that “specifies the flexibility of the task to vary its utilization”   
(Buttazzo et al. 1998). Given a system � = {�1, �2,… , �n} of n such elastic tasks, 
the objective is to assign each task �i a utilization Ui , Umin

i
≤ Ui ≤ Umax

i
 , such that 
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(1) 
∑n

i=1
Ui is as large as possible but bounded from above by a specified constant Ud 

which denotes the maximum cumulative utilization that can be accommodated; and 
(2) if Ui > Umin

i
 and Uj > Umin

j
 then Ui and Uj must satisfy the relationship1

A task system �  for which such Ui exist for all the tasks is said to be feasible . 
An algorithm was presented in Buttazzo et al. (1998) Fig. 3 for determining feasi-
bility and of computing the appropriate values for the utilizations —the Ui’s— of 
feasible systems in O(n2) time. Essentially this same algorithm was also repurposed 
in Buttazzo et al. (1998) for admission control: for determining whether a new task 
seeking to join an already-executing system could be admitted without compromis-
ing feasibility, and if so, recomputing the utilization values for the new task as well 
as for all preëxisting ones. Extensions to elastic scheduling that were proposed by 
Chantem et al. (2006, 2009) reformulate the problem of determining the utilizations 
as a quadratic programming problem. This allows the iterative technique in Buttazzo 
et al. (1998) to be applied to a more general class of problems. However, this refor-
mulation continues to have quadratic time-complexity. In this short note we present 
a more efficient implementation of the algorithm of  Buttazzo et  al. (1998) Fig.  3 
that determines feasibility and computes the Ui values in O(n log n) time, and does 
admission control in O(n) time.

2  Overview of Prior Results

Let �  denote a feasible task system with Ei > 0 for all tasks2 �i ∈ �  , and consider 
the Ui values that bear witness to this feasibility (i.e., each Ui either equals Umin

i
 , or 

satisfies Expression 1). The tasks in �  may be partitioned into two classes �VARIABLE 
(those tasks for which Ui > Umin

i
 , and which can therefore have their utilizations 

“varied” –compressed– further if necessary) and �FIXED (those for which Ui = Umin
i

 ; 
i.e., their utilizations are now “fixed”). It has been shown  (Buttazzo et  al. 1998, 
Eqn. 8) that for each �i ∈ �VARIABLE

where USUM =

�

∑

�i∈�VARIABLE

Umax
i

�

 and ESUM =

�

∑

�i∈�VARIABLE

Ei

�

 respectively denote 
the sum of the Umax

i
 parameters and the Ei parameters of all the tasks in �VARIABLE , 

(1)
(

Umax
i

− Ui

Ei

)

=

(

Umax
j

− Uj

Ej

)

(2)Ui = Umax
i

−

(

USUM −
(

Ud − �
)

ESUM

)

× Ei

2 All tasks �
i
 with E

i
= 0 must have U

i
← U

max

i
 in order to satisfy Expression 1; we assume this is done 

in a pre-processing step, and the value of U
d
 updated to reflect the remaining available utilization.

1 For tasks �
i
 having E

i
= 0 , U

i
= U

min

i
 , and therefore the relationship needs not be satisfied.
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and � =

�

∑

�i∈�FIXED

Umin
i

�

 denotes the sum of the Umin
i

 parameters of all the tasks in 
�FIXED.3 Given a set of elastic tasks �  , the algorithm of Buttazzo et al. (1998) Fig. 3 
starts out computing Ui values for the tasks assuming that they are all in �VARIABLE — 
i.e., their Ui values are computed according to Expression 2. If any Ui so computed is 
observed to be smaller than the corresponding Umin

i
 then that task is moved from 

�VARIABLE to �FIXED , the values of USUM , ESUM , and � are updated to reflect this transfer, 
and Ui values recomputed for all the tasks. The process terminates if no computed Ui 
value is observed to be smaller than the corresponding Umin

i
 . It is easily seen that one 

such iteration (i.e., computing Ui values for all the tasks) takes O(n) time. Since an 
iteration is followed by another only if some task is moved from �VARIABLE to �FIXED 
and there are n tasks, the number of iterations is bounded from above by n. The 
overall running time for the algorithm of (Fig. 3, Buttazzo et al. (1998)) is therefore 
O(n2) . 

3 Observe that � equals the amount of utilization that is allocated to the tasks in �
FIXED

 ; therefore 
(U

d
− �) represents the amount available for the tasks in �

VARIABLE
 , and 

(

U
SUM

− (U
d
− �)

)

 the amount 
by which the cumulative utilizations of these tasks must be reduced from their desired maximums. As 
shown in the RHS of Expression 2, under elastic scheduling this reduction is shared amongst the tasks in 
proportion to their elasticity parameters: �

i
 ’s share is (E

i
∕E

SUM
).
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3  Our Approach

Let us define an attribute �i for elastic task �i as follows:

We will prove a result (Theorem 1 below) that allows us to conclude that in the algo-
rithm of  (Fig. 3, Buttazzo et al. (1998)), tasks may be “moved” from �VARIABLE to 
�FIXED in order of their �i parameters.

Assuming that the tasks are indexed in a linked list such that �i ≤ �i+1 for all 
i, 1 ≤ i < n , we can then simply make a single pass through all the tasks from �1 to �n , 
identifying, and computing Ui values for, all the ones in �FIXED before any of the ones 
in �VARIABLE . With appropriate book-keeping (see the pseudo-code in Algorithm 1) 
this can all be done in a single pass in O(n) time. The cost of sorting the tasks in 
order to arrange them according to non-increasing �i parameters is O(n log n) , and 
hence dominates the overall run-time complexity: determining feasibility and com-
puting the Ui parameters can be done in O(n log n) + O(n) = O(n log n) time.

Admission control – determining whether it is safe to add a new task and rec-
omputing all the Ui parameters if so – requires that the new task be inserted at the 
appropriate location in the already sorted list of preëxisting tasks — this can be 
achieved in O(n) time. Once this is done, the Ui values can be recomputed in O(n) 
time by the pseudo-code in Algorithm 1. Similarly, removing a task from the system 
and recomputing the Ui values also takes O(n) time since sorting is not needed.

4  A Technical Result

We now present the main technical result in this short note.

Theorem 1 If �i ∈ �FIXED and �i ≥ �j then �j ∈ �FIXED.

Proof Consider some iteration of the algorithm of  (Fig. 3, Buttazzo et  al. (1998)) 
such that �i and �j both start out in �VARIABLE , but �i is determined to belong in �FIXED 
in this iteration. This implies that Umin

i
 is at least as large as the value of Ui that is 

computed according to Expression 2:

By algebraic simplification of the above, we have

(3)�i

def
=

(

Umax
i

− Umin
i

Ei

)

Umin
i

≥ Umax
i

−

(

USUM −
(

Ud − �
)

ESUM

)

× Ei

(4)

(

USUM −
(

Ud − �
)

ESUM

)

≥

(

Umax
i

− Umin
i

Ei

)
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Note that the LHS of Expression 4 does not contain any term specific to �i and so is 
the same for all the tasks in �VARIABLE for this iteration, and that the RHS is simply �i . 
Since �i ≥ �j (as per the statement of the theorem), we may conclude by the transi-
tivity of the ≥ operator on the real numbers that the LHS of Expression 4 would also 
be ≥ �j ; equivalently, the value of Umin

j
 is no smaller than the value of Uj that is com-

puted according to Expression 2, and as a consequence �j , too, should be moved to 
�FIXED .   ◻
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