
Integrated Real-Time Control and Scheduling for
Safety Critical Cyber-Physical Systems

Marion Sudvarg1, Andrew Clark2, and Chris Gill1

1Department of Computer Science and Engineering 2Department of Electrical and Systems Engineering
James McKelvey School of Engineering, Washington University in St. Louis

St. Louis, Missouri, United States
{msudvarg, andrewclark, cdgill}@wustl.edu

Abstract—Cyber-physical systems (CPS) must interact with
varying environments at fine-grained time-scales, assuring control
safety and stability while optimizing application-specific per-
formance objectives. To address those requirements, co-design
of real-time control and scheduling has received considerable
attention over multiple decades, to allow rigorous assurance of
system properties while enabling diverse forms of adaptation to
changing operating conditions.

In this paper, we present a new formalization of the periodicity
requirements for control inputs to (1) guarantee reachability of
safe (and avoidance of unsafe) portions of the system state space,
(2) adaptively manage dynamic periodicity constraints that may
change as the state space is traversed, and (3) express minimum
periods to enable safe hand-offs between high-performance con-
trollers and more conservative backup controllers. Our evalua-
tions of this approach confirm that it is able to maintain system
safety and stability while optimizing system performance.

Index Terms—Cyber-physical systems, real-time scheduling,
control barrier functions, control and scheduling co-design

I. INTRODUCTION

An increasingly connected world has driven rising demand
for applications that respond to events in real-time. In cyber-
physical systems (CPS), where software must sense and con-
trol physical interactions with the outside world, timely execu-
tion must be guaranteed: temporal correctness is as essential as
functional correctness so that scheduling computations to meet
deadlines is a first-class concern. Schedulability analysis has
been a core focus of the real-time systems community, which
has modeled the computational aspects of CPS using nuanced
expansions of Liu and Layland’s recurrent task model [1]:
tasks are characterized by static properties like worst-case
execution times, periods, and deadlines; a set of tasks is then
deemed SCHEDULABLE or UNSCHEDULABLE according to
these parameters for the chosen scheduling algorithm.

However, CPS increasingly execute in varying environ-
ments: microrobots [2]–[4] and other autonomous systems [5]–
[7] must remain adaptable in diverse contexts. In safety-critical
control systems, it is crucial that a system remain both schedu-
lable and safe, even as modes change in response to exogenous
conditions or proximity to unstable or unsafe regions of the
state space as the system navigates its environment. Adaptive
scheduling and control are thus fundamentally coupled, and
both should be configured to optimize performance within
application-specific dynamic timing and safety constraints.

A key performance measure is control cost. In digital control
systems, which discretize continuous control, control cost
monotonically decreases with increasing invocation frequency.
Seto et al. [8] considered scheduling digital controllers as a
problem of selecting controller frequencies to minimize total
control cost while (i) imposing a lower bound on each fre-
quency to “guarantee the system behaves properly under digi-
tal control” and (ii) constraining the total utilization to remain
within the bounds given by rate-monotonic (RM) or earliest
deadline first (EDF) scheduling on a multiprocessor. However,
many problems remain to be solved when implementing this
as an adaptive framework for dynamic environments.

Safety: Selecting and enforcing constraints on digital con-
trollers’ minimum frequencies is vital to safe control system
execution, and remains an open research question. Approaches
include assigning multiples of a system’s characteristic fre-
quencies [8], with control barrier function constraints for
robustness to sampling-related errors [9]–[12]. In this paper,
we present a new formalization of the periodicity requirements
for control inputs based on delay bounds on their outputs that
guarantee reachability of safe (and avoidance of unsafe) por-
tions of the system state space by ensuring positive invariance.

Moreover, in safety-critical systems, controllers that tend to
provide better control performance may be coupled with more
reliable high-assurance backup controllers that give stronger
safety/stability guarantees [13], [14]. We extend our formal-
ization to coupled controllers, presenting (i) an expression for
the minimum safe period of each controller, and (ii) a check
condition, based on a general expression of the safety regions
of the state space, on which the transition from a performance
to backup controller must occur. This also gives rise to an
expression of the minimum frequency as a dynamic constraint
that may change as the state space is traversed.

Adaptive Schedulability: The requirements to maintain safety
in dynamic environments give rise to new scheduling prob-
lems. We formalize these as constrained optimizations over
controller frequencies, with the objective to minimize con-
trol cost within formal safety constraints while guaranteeing
schedulability. For systems we consider, offline calculation for
online use may be infeasible: e.g., in a system of n controllers,
there are 2n possible combinations of performance/backup

activation; for large values of n, storing frequencies for
all configurations quickly becomes prohibitive. Furthermore,
frequency constraints may change as the system traverses
different subregions of the state space. Moreover, execution
mode changes may require the admission of additional tasks,
affecting the schedulability constraints. Thus, the scheduling
algorithm must remain low-overhead, and its execution time
must be accounted for in schedulability analysis.

This paper proposes a framework for solving the opti-
mization problem online, reassigning task periods to maintain
safety, schedulability, and optimality while avoiding transient
overload across controller transitions. It presents efficient algo-
rithms to solve the optimization problem for a representative
class of nonlinear cost functions via linearization with the
Karush–Kuhn–Tucker (KKT) conditions, enabling O(n) pe-
riod reassignment under utilization-based schedulability tests.
We first consider RM and EDF scheduling on a uniprocessor
and then extend the algorithms for fluid and partitioned EDF
approaches to multiprocessor scheduling. We also demonstrate
how this linearization gives rise to efficient numerical methods
for optimization under more complex scheduling policies.

Organization: §II provides background on the system model.
§III formalizes and solves the control problems. §IV formal-
izes and solves the scheduling problems, while considering
how online adaptation can maintain safety and optimize per-
formance across sub-regions of the state space and hand-
offs between controllers. §V evaluates the efficiency of our
scheduling algorithms and performs a case study in aircraft
control.1 §VI positions this paper in the context of other related
work. §VII presents conclusions and future work.

II. PRELIMINARIES AND SYSTEM MODEL

We consider a cyber-physical system (CPS) running a set Γ
of n real-time tasks. Each task τi ∈ ΓCTRL ⊆ Γ controls a non-
linear system ςi. We describe the task model and scheduling
problems we address, then introduce the control model.

A. Scheduling

Each nonlinear system ςi is controlled by an independent
task τi ∈ ΓCTRL running concurrently with non-control tasks:
this gives rise to a scheduling problem for a task set Γ,
with ΓCTRL ⊆ Γ. We consider sporadic tasks τi = (Ci, Ti)
according to Liu and Layland’s model [1] where Ci is the
task’s worst-case execution time, and Ti is the minimum
interarrival time between instances (or jobs) of the task. We
consider only implicit deadlines Di = Ti, but all schedulability
analysis in this paper is sustainable [15], and so it is valid
(though pessimistic) to treat a constrained deadline task τi
with Di < Ti as if it has a period T ′

i = Di. Optimal analysis
for constrained-deadline tasks is left for future work, though
as we show in the following sections, our formalization of
safe periodicity requirements maps naturally to an implicit-
deadline task representation. Under this system model, a

1All simulation and evaluation code and data are available at https://github.
com/McKelvey-Engineering-CSE/2025 rtas control codesign/.

control task’s period Ti is exactly the interval Ti between its
discrete invocations as described in §II-B. Of primary concern
to this work is the selection of frequencies ωi = 1/Ti at which
to run each controller. This gives rise to a problem of control
and scheduling co-design, which we state as follows:

Given a collection of tasks implementing computation of discrete
digital controllers, assign a frequency to each task to minimize
control cost within the constraints of safety and schedulability.

Each task has a minimum frequency ωmin
i — corresponding to

a maximum period Tmax
i — below which system safety cannot

be guaranteed. In §III, we present a novel derivation of this
bound for a system ςi under the control strategies described in
§II-B. If the system is not schedulable, then it cannot guarantee
this frequency is maintained, and it is therefore no longer safe.

Though a control task cannot safely be assigned a period
above its maximum Tmax

i , it can be invoked at a higher
frequency, thereby reducing the cost associated with control-
ling the corresponding system. In this work, we assume the
cost Ji(ωi) for controller ςi is monotonically decreasing and
convex, and that total cost is additive across controllers. This
gives rise to the following constrained optimization problem:

min
ωi

∑
ςi

Ji(ωi) (1a)

s.t. ∀i, ωi ≥ ωmin
i (1b)

and The system is schedulable (1c)

In §IV, we derive a linear-time procedure to solve this ef-
ficiently for representative cost functions under uniprocessor,
fluid, and partitioned EDF scheduling, thus ensuring safety
and schedulability across online controller transitions.

B. Control

We consider a collection S of M nonlinear systems ςi,
each corresponding to a task τi ∈ ΓCTRL. The state of system
ςi at time t is described by xi(t) ∈ Rni with control input
ui(t) ∈ Rmi . Dynamics are governed by

ẋi(t) = fi (xi(t)) + gi (xi(t))ui(t) (2)

where fi : Rni → Rni and gi : Rni → Rni×mi are polynomi-
als [16]. From Eq. (2), the states of the systems are decoupled,
but their corresponding tasks may be scheduled concurrently
on shared resources, giving rise to the control/scheduling co-
design problem described in §II-A.
Safety: The system governed by Eq. (2) operates under the
safety constraints defined as follows. A subset Wi ⊆ Rni is
positive invariant under the dynamics in Eq. (2) for the given
control input ui(t) if xi(t0) ∈ Wi implies that xi(t) ∈ Wi for
all t ≥ t0. In other words, for given dynamics, it describes a
region of the state space for which, once the system enters that
region, it will not leave that region in the future. This allows
us to define formally a control system’s safety.

Definition 1. Let W1, . . . ,WM be a given collection of sets
representing safe regions of the state space with Wi ⊆ Rni .
The nonlinear systems x1(t), . . . , xM (t) are safe if the sets
W1, . . . ,WM are positive invariant.

In §III, we derive a temporal constraint for each controller
that must be enforced by the chosen task scheduling policy
to guarantee system safety. Control Barrier Functions (CBFs),
defined as follows, give one approach for guaranteeing safety.

Definition 2. A function bi : Rni → R is a Control Barrier
Function (CBF) for nonlinear system ςi if:

(i) ∂bi
∂xi

̸= 0 for all xi with bi(xi) = 0 and
(ii) there is a strictly increasing function αi : R → R with

αi(0) = 0 such that

inf

{
∂bi
∂xi

(fi(xi) + gi(xi)ui : ui ∈ Rmi

}
≥ −αi(bi(xi)).

A variety of techniques have been proposed for constructing
CBFs [17]–[19]. The following result gives our main theoret-
ical tool for proving safety of system ςi.

Theorem 1 ([20], Theorem 2). Suppose that a region
Wi is described by Wi = {xi : bi(xi) ≥ 0} for some CBF
bi : Rni → R. Suppose that, at each time t, ui(t) satisfies

∂bi
∂xi

(fi(xi(t)) + gi(xi(t))ui(t)) ≥ −αi(bi(xi(t)) (3)

where the partial derivative is evaluated at xi(t) and αi

satisfies the conditions of Definition 2. Then Wi is positive
invariant.

Control Strategies: The safety of a system described by
Eq. (2) thus depends on the choice of control signal ui(t).
In this work, we consider two types of control strategies,
each of which is based on a discrete-time implementation
of a continuous feedback control law. Our goal is not to
present new methods for constructing control barrier functions
bi or control input functions ui(t). Rather, it is to derive
lower bounds on sampling frequency, and associated adaptive
scheduling policies, to guarantee a system’s safety under these
strategies. The two strategies are described as follows.

1) Single Safe Control Law: In this control law, we are
given a continuous function µi : Rni → Rmi that acts
as a feedback control law. The function µi is assumed to
satisfy Eq. (3) with strict inequality for some class-K function
αi. This property is satisfied, for example, by CBF-based
controllers [20]. This control law is implemented in a sampled-
data manner as a periodic task that releases jobs at a set of
discrete times ri,0 < ri,1 < · · · with ri,j+1 − ri,j = Ti
where Ti is the period of task τi. At a set of discrete times
ti,0 < ti,1 < · · · with each ti,j ∈ [ri,j , ri,j+1), the state
xi(ti,j) is sampled and the control µi(xi(ti,j)) is computed.
The control signal is then given by ui(t) = µi(xi(ti,j)) over
time interval t ∈ [ti,j + Ri,j , ti,j+1 + Ri,j+1], where Ri,j is
the response time required to compute µi(xi(ti,j)) and send
this command to the actuators.

2) Nominal and Safe Backup Control Laws: In this case, we
assume that the controller has two modes, a nominal mode that
prioritizes performance and a safe backup mode that prioritizes
safety. The nominal and backup modes are characterized by
continuous functions µN

i , µ
B
i : Rni → Rmi , respectively.

Here, the backup mode is assumed to satisfy Eq. (3) with strict
equality for some class-K function αi. This class of control
strategies has been described as having an implicit or backup
Control Barrier Function (CBF) in the literature [21], [22],
and assumes state-feedback controllers without internal states.

The control law is again implemented in a sampled-
data manner as a task that releases jobs at a set of dis-
crete times ri,0 < ri,1 < · · · with period Ti = ri,j+1 − ri,j .
At time ti,j ∈ [ri,j , ri,j+1), the system samples state xi(ti,j),
computes bi(xi(ti,j)), and compares it with a threshold
βi representing a distance from the boundary of the safe
region. If bi(xi(ti,j)) ≥ βi, the system stays in nominal
mode, i.e., it computes µN

i (xi(ti,j)) and the control sig-
nal is given by ui(t) = µN

i (xi(ti,j)) over the time interval
[ti,j +Ri,j , ti,j+1 +Ri,j+1]. However, if bi(xi(ti,j)) < βi,
then the control signal is given by ui(t) = µB

i (xi(ti,j)) over
the interval [ti,j +Ri,j , ti,j+1 +Ri,j+1]. Thus, any mode
change is detected within a small fixed-length prefix (which
is added to the task’s worst-case execution time) of the
controller’s execution after sampling, and that mode is used
for the rest of the job.

A key feature of this approach is that the period between job
releases Ti = ri,j+1 − ri,j and the interval from sampling to
applying the control command Ri,j will depend on the mode
of operation; we denote these TN

i and RN
i,j when system ςi

operates in nominal mode and TB
i and RB

i,j in backup mode.

Sum of Squares (SOS) Polynomials: Our procedure in §III
for deriving constraints on controller frequencies requires
checking for the existance of SOS polynomials.

Definition 3. A polynomial h(x) is a sum-of-squares (SOS)
if it can be written in the form

h(x) =

N∑
i=1

qi(x)
2

for some polynomials q1, . . . , qN .

The problem of selecting coefficients of a polynomial h(x)
to ensure that it is SOS can be represented as a semidefinite
program, which is denoted as SOS optimization [23].

III. CONTROL PROBLEMS

This section describes the scheduling constraints imposed
by the safety requirements of the system. In order to ensure
safety, a control task’s period Ti must be sufficiently short.
It also presents a procedure for upper-bounding the delay
interval ∆i,j to guarantee the safety of a control system ςi.

Definition 4 (Delay Interval). Consider a nonlinear system ςi
governed by a discrete digital controller. Its state is sampled
consecutively at times ti,j , ti,j+1 and a control signal is
computed and applied at times t′i,j , t′i,j+1. The delay interval
∆i,j for the sample taken at ti,j is the elapsed time t′i,j+1−ti,j .

Intuitively, the delay interval is the elapsed time between the
sampled state and the application of the next control signal,
as shown in Fig. 1. Intuitively, a safe bound on this interval

Sample

ti,j

Apply

t'i,j

Sample

ti,j+1

Apply

t’i,j+1

Time

Δi,j

Ri,j Ri,j+1

Fig. 1: The delay interval ∆i,j .

depends on how quickly the system may deviate from its
current state under the chosen control law. Given this, keeping
the state from reaching an unsafe region requires bounding the
delay interval between when the current state is measured, and
when the next measurement and application of the resulting
control signal complete. We refer to the safe upper bound
on ∆i,j as the delay bound ∆max

i for the system ςi. This
section derives that bound; in the next section, we use this
to derive a corresponding upper bound on the scheduling
period for implicit-deadline tasks. We first consider a single
safe controller, and then the case where there is a nominal
controller and a safe backup controller, based on the two
control strategies in §II-B.

A. Single Controller

From §II-B, safety of the system is guaranteed if Eq. (3)
holds for all t. We observe that the control input at time t
is given by µi(xi(ti,j)). In other words, the control input is
given by µi(xi(ti,j−1)) while the next input µi(xi(ti,j)) is
being computed, and is equal to µi(xi(ti,j)) thereafter. Our
approach to ensuring Eq. (3) is to prove that

∂bi
∂x

(fi(xi) + gi(xi)µi(x
′
i)) ≥ −αi(bi(xi))

whenever ||xi−x′i||22 ≤ ρ2i , or equivalently, whenever xi(t) is
in the ball of radius ρi centered at x′i. It then suffices to choose
Ti so that xi(t) remains in the ball of radius ρi centered at
xi(ti,j) for all t ∈ [ti,j , ti,j +Ri + Ti].

Our approach to choosing Ti is based on lower-
bounding the derivative d

dt ||xi − x′i||22 when xi is in a
ball of radius ρi centered at x′i. To produce less con-
servative safety conditions, we compute a parameter ψi

so that d
dt ||xi(t)− xi(ti,j)||22 ≤ ψi for t ∈ [ti,j , ti,j +Ri]

and a parameter θi so that d
dt ||xi(t)− xi(ti,j)||22 ≤ θi for

t ∈ [ti,j , ti,j +Ri + Ti]. The goal of our approach is to com-
pute parameters ρi, θi, and ψi (Fig. 2), and then compute the
maximum safe task period Ti as a function of the parameters.

Proposition 1. Suppose that there exist nonnegative param-
eters ψi, θi, and ρi with θi ≤ ψi such that the following
conditions hold:

1) For all xi and x′′i with bi(x′′i) ≥ 0 and ||xi−x′′i ||2 ≤ ρi,

∂bi
∂xi

(fi(xi) + gi(xi)µi(x
′′
i)) ≥ −αi(bi(xi)) (4)

2(xi − x′′i)
⊤(fi(xi) + gi(xi)µi(x

′′
i)) ≤ θi (5)

𝑥𝑖(𝑡𝑖,𝑗)

𝜌𝑖

𝑥𝑖(𝑡𝑖,𝑗+1)

𝑥𝑖(𝑡𝑖,𝑗+1 + 𝑅𝑖,𝑗+1)
{𝑥: 𝑏 𝑥 ≥ 0}

Time, t

𝑥
𝑖
𝑡

−
𝑥
𝑖
𝑡 𝑖
,𝑗

2

𝜌𝑖
2

𝑡𝑖,𝑗 𝑡𝑖,𝑗 + 𝑅𝑖,𝑗 𝑡𝑖,𝑗 + 𝑅𝑖,𝑗+1 + 𝑇𝑖,𝑗

Slope
bounded
by 𝜓𝑖

Slope
bounded
by 𝜃𝑖

Fig. 2: Illustration of the parameters ψi, θi, and ρi.

2) For all xi, x′i, x
′′
i contained in the same ball of radius ρi

with bi(x′′i) ≥ 0, we have

2(xi − x′i)
⊤(fi(xi) + gi(xi)µi(x

′′
i)) ≤ ψi (6)

3) The parameters satisfy ψiRi + θi(Ri +∆i) < ρ2i .
Then the sampled-data control policy with delay interval ∆i

ensures that Wi is positive invariant.

For ease of presentation, we prove this in two lemmas.

Lemma 1. Under the assumptions of Proposition 1,
if bi(xi(0)) > 0, then (i) ||xi(t)− xi(0)|| ≤ ρi for all
t ∈ [0,∆i +Ri,1] where Ri,1 is the response time to compute
and apply the control input at time ti,1, and (ii) bi(xi(t)) > 0
for all t ∈ [t0, ti,1].

Proof. We first show (i). Suppose condition (i) is violated, and
let t′ = inf {t : ||xi(t)− xi(0)|| > ρi}. We have that

||xi(t′)− xi(0)||22

=

∫ t′

0

2(xi(τ)− xi(0))
⊤(fi(xi(τ)) + gi(xi(τ))µi(xi(0))) dτ

≤ t′θi ≤ (∆i +Ri)θi < ρ2i ,

a contradiction, where the first inequality follows from Eq. (5).
Now, since (i) holds, we have that

d

dt
bi(xi(t)) =

∂bi
∂xi

(fi(xi(t)) + gi(xi(t))µi(xi(0)))

≥ −αi(bi(xi(t))

for t ∈ [0, ti,1] by Eq. (4), implying (ii) that bi(xi(t)) > 0 by
the comparison lemma [24].

Lemma 2. Let j be a positive integer. Under the
assumptions of Proposition 1, if bi(xi(ti,j)) > 0 and
||xi(t)− xi(ti,j−1)||2 ≤ ρi for all t ∈ [ti,j , ti,j +Ri], then (i)
||xi(ti,j)− xi(t)||2 ≤ ρi for all t ∈ [ti,j , ti,j+1 +Ri,j+1] and
(ii) bi(xi(t)) > 0 for all t ∈ [ti,j , ti,j+1].

Proof. Suppose that condition (i) fails, and let
t′ = inf {t : ||xi(t)− xi(ti,j)||2 > ρi}. First, suppose that
t′ ≤ tij +Rij . We have

||xi(t′)− xi(tij)||22

=

∫ t′

tij

[2(xi(τ)− xi(tij))
⊤(fi(xi(τ))

+gi(xi(τ))µi(xi(ti,j−1)))] dτ

≤ (t′ − tij)ψi ≤ Riψi ≤ ρ2i ,

a contradiction. Now, suppose that t′ ∈ [tij + Rij , ti,j+1 +
Ri,j+1]. We have

||xi(t′)− xi(tij)||22 ≤
∫ tij+Rij

tij

[2(xi(τ)− xi(tij))
⊤

·(fi(xi(τ)) + gi(xi(τ))µi(xi(ti,j−1)))] dτ

+

∫ t′

tij+Rij

[2(xi(τ)− xi(tij))
⊤

·(fi(xi(τ)) + gi(xi(τ))µi(xi(ti,j))) dτ

≤ Riψi + t′(θi) ≤ Riψi + (∆i +Ri)θi < ρ2i

a contradiction. Hence (i) holds. Condition (ii) then follows
from Eq. (4) and the comparison lemma.

Proof of Proposition 1. The proof is by induction on j. When
j = 0, the result holds by Lemma 1. For positive j, the result
holds by Lemma 2.

The next step is a procedure for computing the parameters
along with the maximum delay interval. Our procedure con-
sists of the following steps:
A1) Using binary search, find the maximum value of ρi such

that there exist SOS polynomials λi,j(xi, x′i), j = 0, 1, 2
where the following is SOS:

λi,0(
∂bi
∂xi

(fi(xi) + gi(xi)µi(x
′
i)) + αi(bi(xi)))

− λi,1bi(x
′
i)− λi,2(ρ

2
i − ||xi − x′i||22) (7)

A2) Using binary search, find the minimum value of θi
such that there exist SOS polynomials ξi,j(xi, x

′
i) for

j = 0, 1, 2 such that the following is SOS:

ξi,0(θi − 2(xi − x′i)
⊤(fi(xi) + gi(xi)µi(x

′
i)))

− ξi,1bi(x
′
i)− ξi,2(ρ

2
i − ||xi − x′i||22) (8)

A3) Using binary search, find the minimum value of ψi
such that there exist SOS polynomials ϕi,j(xi, x′i, x

′′
i) for

j = 0, 1, 2, 3, 4 where the following is SOS:

ϕi,0(ψi − 2(xi − x′i)
⊤(fi(xi) + gi(xi)µi(x

′′
i)))

−ϕi,1bi(x
′′
i)−ϕi,2(ρ

2
i −||xi−x′i||22)−ϕi,3(ρ

2
i −||x′i−x′′i ||22)

− ϕi,4(ρ
2
i − ||xi − x′′i ||22) (9)

A4) Assign ∆max
i as

∆max
i =

ρ2i − θiRi − ψiRi

θi
. (10)

The response time Ri depends on guarantees given by the
scheduler, and so it is not independent of the delay bound
∆max

i . In §IV-A, we show how to transform Eq. (10) under
the class of scheduling policies considered in this paper.

Proposition 2. If ∆max
i is chosen such that Eqs. (7)–(10) are

satisfied, then the control renders Wi positive invariant.

Proof. Eqs. (7) and (8), respectively, ensure that Eqs. (4)
and (5) hold for all xi and x′′i with bi(x

′′
i) ≥ 0 and

||xi − x′′i ||2 ≤ ρi. Eq. (9) ensures that Condition 2) of Propo-
sition 1 holds. Finally, Step A4) ensures that Condition 3) of
Proposition 1 holds.

To mitigate the computational complexity of SOS program-
ming, sufficient conditions for Eqs. (5)–(6) can be derived.
If fi(xi) = Fixi, gi(xi) = Gi, and µi(xi) = Kixi for some
matrices Fi, Gi,Ki, and if there exists γi ≥ 0 such that
||xi|| ≤ γi for all xi in the safe region, then

min {θi, ψi} ≥ 2ρi(||Fi||+ ||GiKi||)γi

ensures that Eqs. (5)–(6) are satisfied.

B. Safe Backup Control Architecture

We now derive an approach for choosing periods TN
i and

TB
i in order to compute the minimum sampling times for given

values of βi. We first present sufficient conditions for safety.

Proposition 3. Suppose that there exist nonnegative param-
eters ρNi , θNi , ψN

i , ρBi , θBi , and ψB
i such that the following

conditions are satisfied:
(i) For all xi and x′i with ||xi − x′i|| ≤ ρNi and bi(x′i) ≥ βi,

conditions (4)–(5) hold with θi = θNi .
(ii) For all xi, x′i, x

′′
i lying in a ball of radius ρNi with

bi(x
′′
i) ≥ βi, condition (6) holds with ψi = ψN

i .
(iii) For all xi and x′i with ||xi − x′i|| ≤ ρBi and

bi(x
′
i) ∈ [0, βi], conditions (4)–(5) hold with θi = θBi .

(iv) For all xi, x′i, x
′′
i lying in the same ball of radius ρBi ,

condition (6) holds with ψi = ψB
i .

(v) We have RN
i ψ

N
i + (RN

i +∆N
i)θNi ≤ (ρNi)2 and

RB
i ψ

B
i + (RB

i +∆B
i)θ

B
i ≤ (ρBi)

2.
Then the set Wi is positive invariant.

Proof. We will prove that, if bi(xi(ti,j−1)) ≥ 0, then
bi(xi(t)) ≥ 0 for all t ∈ [ti,j−1, tij]. Since bi(xi(0)) ≥ 0,
this is sufficient to imply positive invariance. We
have that, if bi(xi(ti,j−1)) ≥ βi, then bi(xi(t)) ≥ 0 for
t ∈ [ti,j−1, tij] by (i), (ii), (v), and Proposition 1. Similarly, if
bi(xi(ti,j−1)) ∈ [0, βi], then bi(xi(t)) ≥ 0 for t ∈ [ti,j−1, ti,j]
by (iii)–(v) and Proposition 1.

A modified version of the procedure from §III-A then can
be used to compute the delay bounds ∆max,N

i and ∆max,B
i

by repeating steps A1-A4 using the mode-specific variables
RN

i,j when system ςi operates in nominal mode and and RB
i,j

in backup mode as discussed in §II. The delay bound ∆max,N
i

denotes a safe upper bound on the elapsed time from ti,j when
the state is sampled to the time t′i,j+1 at which the next control
signal is applied if the nominal controller is selected based on
the sampled state at time ti,j . ∆max,B

i is an upper bound on
the elapsed time from the sampled state used by the backup
controller to application of the next control signal. Thus, if
from the state sampled at time ti,j+1, a controller transition is
triggered, the delay bound from the previous sample (i.e., the
controller used at time ti,j) must be respected.

IV. OPTIMAL AND SAFE SCHEDULING

Given the scheduling model of §II-A and the control strate-
gies outlined in §II-B, our goal now is to design policies that
concurrently schedule control and non-control tasks so as to (i)
minimize control cost within (ii) the safety constraints imposed

Sample Apply Sample Apply

Time

Ri,j Ri,j+1

ti,j t'i,j ti,j+1 t’i,j+1

Δi,j

Ci ai Ci ai

Tiri,j ri,j+1 ri,j+2

Fig. 3: The relationship between period Ti and delay interval ∆i,j .

by the controlled systems. In this section, we formulate this
as a constrained optimization problem for systems of implicit-
deadline tasks, then present a linear-time algorithm to solve
the problem for utilization-based schedulability analysis.

A. Safe Scheduling

We map the safety conditions in §III to a policy for task
parametrization and scheduling, such that a digital control
system remains safe if its tasks are deemed schedulable.
Safe Parameters: For a control task τi ∈ ΓCTRL, Ci is assigned
as the worst-case execution time to sample the system’s
state and compute the control signal. From this we have the
following theorem, which constrains the period Ti:

Theorem 2. If a control task τi is deemed schedulable when
invoked at a period Ti ≤ ∆max

i −ai

2 , then the corresponding
system ςi is guaranteed to remain safe. Here, ∆max

i is the
delay bound, defined as in Definition 4, and derived in §III
for the considered control strategies; and ai is the worst-case
time to physically apply the computed control signal.

Proof. Consider a job Ji,j of task τi released at time ri,j . Since
the task is to sample the system state and compute the corre-
sponding control signal, this will complete before its deadline
ri,j + Ti if the task is schedulable, and so the sample will be
obtained at some time ti,j for t0 ≤ ti,j ≤ t0 + Ti. Similarly,
the next job Ji,j+1 is released at time ri,j+1 = ri,j + Ti
with deadline ri,j + 2Ti, and so if the task is schedulable,
the next control signal is computed at some time ci,j+1 for
ri,j + Ti + Ci ≤ ci,j+1 ≤ ri,j + 2Ti. Then the time t′i,j
at which the control is physically applied is ci,j+1 + ai, so
t′i,j+1 ≤ ri,j + 2Ti + ai. Then since ti,j ≥ ri,j , we have
∆i,j = t′i,j+1 − ti,j ≤ ri,j + 2Ti + ai − ri,j = 2Ti + ai. Then
if Ti ≤ ∆max

i −ai

2 , we have ∆i,j ≤ 2
∆max

i −ai

2 + ai = ∆max
i .

Since ∆i,j ≤ ∆max
i , the system ςi remains safe.

We refer to this upper bound on the period Ti of task τi as
Tmax
i . The above proof is illustrated in Fig. 3.

Schedulability: Theorem 2 says that a collection S of systems
ςi will remain safe if their controllers are scheduled under the
following conditions:
C1) Every task τi ∈ ΓCTRL that implements control of system

ςi is assigned a period Ti ≤ Tmax
i .

C2) All tasks τi ∈ Γ are assigned implicit deadlines Di = Ti.
C3) Tasks are scheduled according to these parameters.
C4) Sustainable analysis for the chosen scheduling algorithm

deems the task set Γ to be schedulable with properly-
characterized worst-case execution times Ci.

It is important to emphasize that this analysis guarantees
safety even in the presence of delays between job release ri,j
and sampling ti,j , or delays in execution due to preemption
by higher priority jobs. Such delays are illustrated in Fig. 3.
Computing the Delay Bound: Under the stated schedula-
bility conditions, the time Ri to compute and apply a sig-
nal from controller ςi is upper-bounded by Tmax

i + ai. For
Ti ≤ ∆max

i −ai

2 , Ri ≤ ∆max
i +ai

2 . Substituting into Eq. (10),

∆max
i =

ρ2i − θi(∆
max
i + ai)/2− ψi(∆

max
i + ai)/2

θi
.

Solving for ∆max
i ,

∆max
i =

2ρ2i − (θi + ψi)ai
3θi + ψi

(11)

B. Minimizing Control Cost
Although the system’s safety constraints impose a maximum

period Tmax
i (equivalently, a minimum frequency ωmin

i =
1/Tmax

i) on each control task, it may be desirable to invoke
the controller at a higher frequency to reduce control cost.
This gives rise to a constrained optimization problem of the
form in Eq. (1), where periods Ti (equivalently, frequencies
ωi = 1/Ti) are assigned to each control task τi ∈ ΓCTRL to
minimize control cost within the safety constraints.
Convex, Non-Increasing Control Cost: If the control cost
J(ω) is monotone non-increasing as a function of frequency, it
may be solved using the method of Lagrange multipliers. Here,
we derive a solution that gives rise to a linear-time algorithm
for a representative class of cost functions of the form:

Ji(ωi) = Aie
−Biωi (12)

where Ai ∈ R+ and Bi ∈ R+ are constant parameters of the
nonlinear system ςi and its chosen controller. Cost functions
of this form have been used in the prior work [14] as approxi-
mations of real-world control objectives [25], e.g., minimizing
tracking error in radar systems, loss in total work produced by
a mechanical system, or minimizing energy use [8] via more
frequent control inputs that allow gentler corrective actions.
Utilization-Based Schedulability Analysis: We primarily con-
sider scheduling algorithms with utilization-based analysis,
where a sufficient test compares the total system utilization
to a constant bound UD. For multiprocessor scheduling, each
task’s utilization is additionally constrained to not exceed 1.

C. Solution Derivation
1) Feasibility: We note that:

J ′
i(ωi) = −BiAie

−Biωi

Because the first derivative is negative for all ωi > 0, the
cost function is monotone decreasing. Moreover:

J ′′
i (ωi) = B2

iAie
−Biωi

The second derivative is non-negative, so the cost function is
convex. The objective (1a) is the sum of monotone decreasing,
convex functions in the feasible region, and is therefore itself
monotone decreasing and convex.

F ({ωi}, λ, {λi,1}, {λi,2}) =
∑
i

Aie
−Biωi + λ

(∑
i

Ciωi − UD

)
+
∑
i

λi,1

(
ωmin
i − ωi

)
+
∑
i

λi,2 (ωi − 1/Ci) (13)

∂F

∂ωi
= −BiAie

−Biωi + Ciλ− λi,1 + λi,2 = 0 (14a)

∑
i

Ciωi − UD ≤ 0 (14b)

ωmin
i − ωi ≤ 0 (14c)

ωi − 1/Ci ≤ 0 (14d)

λ ≥ 0 (14e)
λi,1 ≥ 0 (14f)
λi,2 ≥ 0 (14g)

λ

(∑
i

Ciωi − UD

)
= 0 (14h)

λi,1

(
ωmin
i − ωi

)
= 0 (14i)

λi,2 (ωi − 1/Ci) = 0 (14j)

Fig. 4: Lagrangian and Karush–Kuhn–Tucker (KKT) Conditions.

2) KKT Conditions: This lets us use the method of La-
grange multipliers [26], [27]. The Lagrangian function corre-
sponding to our stated objective in Eq. (13), and the Karush-
Kuhn-Tucker (KKT) conditions in Eq. (14), are grouped for
ease of reference in Fig. 4.

3) Solution Derivation: We assume that for all i,
ωmin
i < 1/Ci. If ωmin

i = 1/Ci, then ωi must be 1/Ci, so the
frequency of controller ςi is not variable and can be removed
from the problem, reducing UD by 1. If ωmin

i > 1/Ci, then
task τi would have a utilization greater than 1; we consider
only sequential tasks, so we do not allow this under our system
model. For completeness, we also address these trivial cases:

• If UD ≥ n then ωi = 1/Ci for all i.

• If UD =
∑

i Ciω
min
i then ωi = ωmin

i for all i.

• If UD <
∑

i Ciω
min
i then no feasible solution exists, and

so safety of the system cannot be guaranteed.

Otherwise, from the complimentary slackness condition
(14j), we know that if ωi < 1/Ci for any τi, then λi,2 is 0.
Similarly, since λi,1 ≥ 0 (14f) the stationarity condition (14a)
requires that λ > 0 since the first term is negative, and so
from (14h),

∑
i Ciωi = UD. Intuitively, this says that if any

controller’s utilization is less than 1, then the total utilization
is UD — otherwise, we can still increase the frequency of
some controller to achieve a better result.

Let us assume first that ωmin
i < ωi < 1/Ci for some τi. The

stationarity condition (14a) reduces to:

−BiAie
−Biωi + Ciλ = 0 (15)

Solving for ωi:

ωi =
1

Bi

(
ln

(
AiBi

Ci

)
− lnλ

)
(16)

We introduce terms ℓi = ln
(

AiBi

Ci

)
and z = − lnλ. Then,

from the primal constraints on ωi (14c) and (14d), we have:

ωi(z) = max

(
min

(
1

Bi
(ℓi + z), ωmax

i

)
, ωmin

i

)
(17)

where ωmax
i = 1/Ci. It remains to find the value z for which∑

i Ciωi(z) = UD, from which ωi and Ti are computed.

Algorithm 1: ASSIGN FREQUENCIES(ΓCTRL ,UD)

1 Input: A set ΓCTRL of control tasks, Desired total utilization UD

2 Output: A set {Ti} of period assignments

3 ▷ Check trivial cases
4 Umin ← 0, Umax ← 0
5 forall τi ∈ ΓCTRL do
6 Umin ← Umin + Ciω

min
i , Umax ← Umax + Ciω

max
i

7 if UD ≥ Umax then return {1/ωmax
i }

8 if UD = Umin then return {1/ωmin
i }

9 if UD < Umin then return INFEASIBLE

10 ▷ Create sorted list of minimum and maximum
values of z for each task

11 Z ← ∅
12 forall τi ∈ ΓCTRL do
13 zmin

i ← Biω
min
i − ℓi

14 zmax
i ← Biω

max
i − ℓi

15 Insert zmin
i and zmax

i into Z

16 ▷ Solve for z
17 U∗

D ← UD − Umin

18 A ← 0,B ← 0
19 forall zi ∈ Z do
20 if zi is zmin

i then
21 U∗

D ← U∗
D + Ciω

min
i

22 A ← A+ ℓiCi
Bi

,B ← B + Ci
Bi

23 else if zi is zmax
i then

24 U∗
D ← U∗

D − Ciω
max
i

25 A ← A− ℓiCi
Bi

,B ← B − Ci
Bi

26 z ← U∗
D−A
B

27 if z ≤ next zi ∈ Z then break

28 ▷ Compute periods Ti

29 forall τi ∈ ΓCTRL do
30 Compute ωi(z) per Eq. (17)
31 Ti = 1/ωi

32 return {Ti}

D. Solving for z

From the KKT conditions, we derived Eq. (17), showing that
our optimization problem reduces to a linear program with a
single degree of freedom z. Finding optimal task frequencies
within the system’s safety and schedulability constraints thus
requires us to solve for a single value of z for which the total
utilization does not exceed the schedulable utilization bound
UD. Alg. 1 outlines such a procedure. It takes the set ΓCTRL

of control tasks and the desired utilization UD; we assume
the utilization demand of non-control tasks (which have fixed
execution times and periods) is subtracted from the system’s
schedulable utilization bound in a pre-processing step.

Lines 3–9 check the trivial cases outlined previously. Here,

𝑧𝑧𝑖
min 𝑧𝑖

max

𝜏𝑖𝜖ΓVAR
𝜏𝑖𝜖ΓMAX𝜏𝑖𝜖ΓMIN

𝑧𝑧3
min 𝑧3

max𝑧2
min 𝑧4

min𝑧1
min 𝑧1

max 𝑧2
max 𝑧4

max

𝑧3
min ≤ 𝑧 ≤ 𝑧2

max

Fig. 5: Task partitions into ΓMIN, ΓVAR, and ΓMAX with respect to z.
Top: If z ≤ zmin

i , then τi ∈ ΓMIN; if z ≥ zmax
i , then τi ∈ ΓMAX; and

if zmin
i < z < zmax

i , then τi ∈ ΓVAR. Bottom: For the displayed or-
dering of zmin

i and zmax
i values, if zmin

3 < z < zmax
2 , then τ4 ∈ ΓMIN,

τ2, τ3 ∈ ΓVAR, and τ1 ∈ ΓMAX.

ωmin
i = 1/Tmax

i , where Tmax
i is derived from ∆max

i according
to Theorem 2. For sequential tasks, ωi must be no greater
than 1/Ci to avoid the utilization of τi from exceeding 1. For
generality, we denote the upper bound on ωi as ωmax

i , since
the semantics of the corresponding control system ςi might
impose a different upper bound on invocation frequency.

If none of the trivial cases are met, we know that the value
of z for which

∑
i Ciωi(z) = UD (we call this z∗) is such

that ωmin
i < ωi(z

∗) < ωmax
i for some τi. We denote zmin

i as
the value of z for which ωi(z) = ωmin

i and similarly for zmax
i .

Then since ωi(z) is linear, if none of the trivial cases are met,
it follows that mini z

min
i < z∗ < maxi z

max
i .

This means that, for the optimal value z∗ of z, we can
partition tasks τi ∈ ΓCTRL into three subsets. ΓMIN are those for
which z∗ ≤ zmin

i and so ωi(z
∗) = ωmin

i . ΓMAX are similarly
those for which z∗ ≥ zmax

i and so ωi(z
∗) = ωmax

i . And
finally ΓVAR are those for which zmin

i ≤ z∗ ≤ zmax
i , so ωi

still remains variable with respect to z. It follows that ΓVAR

must be non-empty if none of the trivial cases are satisfied.
Given such a partition, from Eq. (17) we can solve for z∗:∑

τi∈ΓVAR

Ci

(
1

Bi
(ℓi + z∗)

)
+

∑
τi∈ΓMIN

Ciω
min
i +

∑
τi∈ΓMAX

Ciω
max
i = UD

For brevity, we introduce the following notation:

U∗
D = UD −

∑
τi∈ΓMIN

Ciω
min
i −

∑
τi∈ΓMAX

Ciω
max
i (18)

From this we get:

z∗ =
U∗
D −

∑
τi∈ΓVAR

ℓiCi

Bi∑
τi∈ΓVAR

Ci

Bi

(19)

The problem now is that the partition of tasks into sets
ΓVAR, ΓMIN, and ΓMAX is not known a priori, so we may need
to test each possible partition. However, only some partitions
are feasible, because tasks move between these partitions in
order of their zmin

i and zmax
i values, as illustrated in Fig. 5.

Lines 11–15 of Alg. 1 compute and sort these values into a
list Z, defining the 2n− 1 possible task partitions.

For each partition, Alg. 1 solves for z according to Eq. (19).
If z is too large, i.e., if z would imply a different task partition
based on the values of ωmin

i and ωmax
i , then the next partition

is checked. Otherwise, the value of z is the optimal value z∗,
and task periods are assigned accordingly.

Execution Time Optimization: Naı̈vely, for n tasks, computing
z∗ for a given partition takes time O(n), and with 2n− 1
partitions, solving for z∗ takes time quadratic in the number
of tasks. However, given the sorted list Z of zmin

i and zmax
i

values, our algorithm finds a solution in linear time by tracking
each term in Eq. (19); these can be updated in constant time
as a task moves between partitions.

We assume that all tasks start in ΓMIN, so U∗
D is initialized

to UD −
∑

τi∈ΓMIN
Ciω

min
i (Line 17), while

∑
τi∈ΓVAR

ℓiCi

Bi

(denoted A) and
∑

τi∈ΓVAR

Ci

Bi
(denoted B) are initialized to 0.

The algorithm then iterates over values of z in Z. For values
zmin
i , task τi is moved from ΓMIN to ΓVAR; U∗

D is therefore
increased by Ciω

min
i since the frequency of τi is now variable

(Line 21), and A and B are increased by the appropriate
amounts (Line 22). Values zmax

i represent moving task τi from
ΓVAR to ΓMAX; U∗

D is therefore decreased by Ciω
max
i since the

frequency of τi is now fixed (Line 24), and A and B are
reduced accordingly (Line 25).

Once values U∗
D, A, and B are updated, z can be computed

in constant time (Line 26). For n tasks, execution time
is therefore O(n log n) to compute and sort values in Z,
O(2n− 1) = O(n) time to solve for z∗, and finally O(n) time
to compute periods; total time is thus O(n logn).

E. Application to Utilization-Based Scheduling Algorithms

We now discuss how to use Alg. 1 to assign periods to
control tasks scheduled with utilization-based analysis.

Uniprocessor Scheduling: The Liu and Layland model of
periodic, implicit-deadline tasks [1] tells us that for pre-
emptive EDF scheduling, the utilization bound UD = 1. For
task-level fixed-priority scheduling, rate-monotonic priority
assignment is optimal, and achieves a utilization bound of
UD = n(n

√
(2) − 1) for a set Γ of n tasks. In both cases,

UD ≤ 1, granting a refinement that improves the execution
time of Alg. 1 if the maximum frequency of each task τi is
simply restricted by the requirement that individual utilizations
do not exceed 1, i.e., ωmax

i = 1/Ci. In this case, the optimal
value z∗ satisfies z∗ < zmax

i for all τi, so Z can be constructed
to only include values zmin

i .

Fluid Scheduling: Under the fluid scheduling paradigm [28],
individual tasks τi are assigned a fraction fi of a processor
at each instant in time. Implementations exist to approxi-
mate it, e.g., under the RT-FAIR scheduling framework in
LITMUSˆRT [29]. It is a convenient abstraction under which
implicit-deadline tasks are schedulable on m cores so long as
no single task has a utilization exceeding 1, and so long as
the total utilization does not exceed the number of processor
cores. Alg. 1 therefore can be applied directly.

Partitioned EDF Scheduling: While the fluid paradigm is a
convenient abstraction for multicore scheduling, it often re-
mains impractical in real systems [30]. Partitioned scheduling
is an attractive alternative that is straightforward to implement.
Under partitioned EDF, tasks are first assigned to processor
cores, then each core independently schedules its tasks accord-
ing to EDF. The task system is thus schedulable if there exists

an assignment of tasks to cores such that the total utilization on
each core does not exceed 1. This determination is equivalent
to bin-packing, and is therefore NP-hard in the strong sense.
Nonetheless, the first-fit and best-fit descending heuristics are
guaranteed to produce a schedulable allocation on m cores so
long as total utilization does not exceed UD = m+1

2 .
This gives rise to two natural approaches toward assigning

task periods with low control cost while remaining safe under
partitioned EDF. The first is to invoke Alg. 1 with a utilization
bound of UD = m+1

2 . If UNSCHEDULABLE is not returned, a
heuristic is guaranteed to find a schedulable partition for the
assigned periods. At this point, Alg. 1 can be invoked for each
task partition, re-assigning frequencies to achieve a utilization
of up to UD = 1 on each core. Alternatively, one can simply
partition tasks according to their minimum safe frequencies,
then invoke Alg. 1 for each individual core.

F. Numerical Method for Alternative Schedulability Analysis

From Eq. (17), ωi(z) is piecewise linear, non-decreasing
on z. Because control cost decreases with ωi, we can state
our optimization problem as one of finding the maximum
value of z for which the task system is schedulable. To do
so, we can perform a linear or binary search in the interval
z ∈ [mini z

min
i ,maxi z

max
i] at a chosen granularity. For every

value of z that is tested, ωi(z) is calculated for each task, and
the system is tested for schedulability.
Partitioned EDF: This observation gives us a third approach
for partitioned EDF scheduling. For every value of z that is
tested, a heuristic may be used to find a partition. The largest
value of z for which a schedulable partition is still found
defines the assignment of tasks to cores; again, Alg. 1 then may
be invoked for tasks on each individual core to further increase
their frequencies. §V-A compares the three stated approaches.

G. Online Adaptation

A key distinction for the second control strategy introduced
in §II-B is that a system may transition between a nominal
controller and a backup controller, depending on its distance
from an unsafe region. In such cases, the control cost function
coefficients Ai, Bi, delay bound ∆max

i , and execution time
Ci to compute the control signal may change, requiring new
periods be assigned to minimize cost while maintaining safety.

Consider a control task τi that at time ti,j+1 samples the
state of system ςi and determines it must transition from nom-
inal to safe backup mode. The execution time and maximum
period therefore change from CN

i and Tmax,N
i to CB

i and
Tmax,B
i , respectively. Fig. 1 illustrates the challenge: the delay

interval is defined as the time from sampling to the application
of the control signal computed from the next sample. There-
fore, although the new controller has an updated delay bound
∆max,B

i , the previous delay bound ∆max,N
i applies and its

deadline must be met. To avoid transient overload, for each
task we assign Ci as the maximum computation time among its
own control law and that of any controller it may transition to.
Although pessimistic, this is sufficient to allow Ci to subsume
the execution time of a controller after a transition; additional

analysis based on, e.g., online algorithms or semi-clairvoyant
mixed-criticality theory [31] to derive necessary conditions
and lower-bound Ci are deferred to future work.

We now consider how to reassign task periods across a
controller transition. Without loss of generality, assume a
system ςi transitions from nominal to safe backup mode based
on the state sampled at time ti,j+1 (the same arguments apply
for transitions from backup to nominal mode). The constrained
optimization problem now may be solved using the new input
parameters, e.g., by using Alg. 1, to obtain new periods for
each task. How and when the new periods are assigned is case-
dependent, and relies on the observation in [32] that it is safe
to increase a task’s period at any time, and to decrease it at
the next job activation, but not necessarily before.

If the transitioning control task’s period decreases, then
because of the small fixed-length prefix during which the
transition condition is checked and the optimization problem is
solved, the new period is selected during active job execution.
Therefore, the current job’s period (and deadline) must be kept
the same, and it is not until the release of the next job at time
ri,j+2 that the new period is applied. However, observe from
Fig. 1 that this still respects the delay bound from the previous
state sampled at time ti,j . For all other tasks, it is also safe to
delay a period decrease until the next job release, and period
increases can be applied immediately since new periods still
respect the unchanged delay interval used as a constraint in the
optimization problem. On the other hand, if the transitioning
control task’s period increases, the extended period/deadline
can only be applied immediately if the resulting worst-case
delay interval still respects the delay bound from the previous
state sampled at time ti,j . Otherwise, we must wait until the
next job release at time ri,j+2 to extend the period. This means
that all other tasks τk in the system must continue to execute at
their previous periods until that time. If the reassigned period
is shorter, this new period will be applied at the first release
rk,j of τk that occurs after ri,j+2.

V. EVALUATION

A. Evaluation of Scheduling

We first evaluate our scheduling strategies over a broad
space of parameters using randomly-generated synthetic task
sets. We aim to gauge how efficiently Alg. 1 runs for online
reassignment of task frequencies during controller mode tran-
sitions. We also compare the schedulability rates and control
costs achieved by our multiprocessor allocation strategies.

Algorithm Execution Times: To quantify the overhead in-
curred by Alg. 1, we measure its execution time for a large
number of synthetic task sets. We generate sets of tasks τi of
size n from 2–50, and with total minimum safe utilizations
Umin

SUM =
∑

τi
Ci/T

max
i in the range 0.1–0.9 in steps of 0.1.

For each combination of (n,Umin
SUM), we generate 1000 task

sets. Parameters Ai and Bi of the representative control cost
function in Eq. (12) are randomly drawn from a uniform dis-
tribution over [0, 1), while Tmax

i is selected from the range 1–
1000 using a log-uniform distribution as recommended in [33].

0.1
0.3

0.5
0.7

0.9

Minimum Utilization 0
10

20
30

40
50

Number of Tasks

0.2
0.4
0.6
0.8
1.0

M
ea

n
Ti

m
e

(
s)

Fig. 6: Mean execution times of Alg. 1.

The Dirichlet Rescale (DRS) Algorithm [34] distributes the
total minimum utilization Umin

SUM in an unbiased random fashion
across individual tasks; from these and the Tmax

i values,
execution times Ci are derived. The value ℓi = ln(Ai·Bi

Ci
)

is precomputed for each task.
These synthetic task sets are intended to explore a large

space of possible combinations of key task parameters without
reference to any specific controller. The results generalize to
systems with co-scheduled non-control tasks, as these reduce
the processor utilization available to the set ΓCTRL of control
tasks, but do not fundamentally change the optimization prob-
lem. Guided by the results presented in this paper, as future
work we will design new evaluations using specific parameters
for particular controllers, including mode-specific variations.

We implement Alg. 1 in C++, compiling with GCC op-
timization level -O3 and static linking. We run it on a
single core of an AMD Threadripper PRO 7985WX with
128GB of RAM running Linux 6.8.0-45-generic. Fig. 6 plots
a surface showing mean execution times for each combination
(n,Umin

SUM). We observe that the algorithm is very efficient,
executing in about 1.2µs on average for sets of 50 tasks. For
lower values of Umin

SUM , execution time tends to increase slightly
because there is more room to increase task frequencies from
their minimum safe values, so the algorithm must iterate over
more task partition boundaries zmin

i .
Nonetheless, there is not a strong dependence, so we also

look at the 99th-percentile execution times aggregated across
all values Umin

SUM for each n. These are plotted in Fig. 7.
99th-percentile times remain below 1.2µs overall, reinforcing
that this algorithm is suitable for online transitions without
inducing substantial overhead. Notably, though its overhead
tends to increase with n, there is a slight decrease from 39 to
42 tasks. We found this to be consistent over multiple reruns,
and traced this to the C++ standard library’s sort routine.

Multiprocessor Allocation: Next, we consider the co-
scheduling of a large number of control tasks on a multicore
system. We generate systems of control tasks of size n in
the range 32–100 in steps of 2, and numbers of cores m
in the range 2–16. For each combination (n,m), we draw
Umin

SUM uniformly from the interval [1,m), then use DRS [34]
to distribute this without exceeding 1 for an individual task.
Parameters Ai, Bi, Tmax

i , and Ci are assigned as before.
We evaluate the three strategies outlined in §IV-E, §IV-F

for allocating tasks to processors and assigning periods under
partitioned EDF: (i) P-EDF, where tasks are first partitioned

0 10 20 30 40 50
Number of Tasks

0.0

0.5

1.0

1.5

Ti
m

e
(

s)

Fig. 7: 99th-percentile execution times of Alg. 1.

according to Tmax
i , then Alg. 1 is invoked for each core. (ii)

P-EDF-U, where Alg. 1 is invoked with UD = m+1
2 , tasks

are partitioned, then periods are re-assigned on each core.
(iii) P-EDF-OPT, where the largest value of z for which task
frequencies ωi computed per Eq. (17) achieve a schedulable
partition is found by linear search, then periods are again re-
assigned on each core by Alg. 1. We use the first-fit descending
(by utilization) bin packing heuristic, and for P-EDF-OPT, we
search for z with a step size (maxi z

max
i −mini z

min
i)/1000.

We compare these approaches to fluid scheduling, which
provides us with theoretically-optimal bounds on schedulabil-
ity and control cost. Fig. 8a shows the schedulability rates
achieved by each approach. The lower surface is P-EDF-
U, which successfully schedules about half of the evaluated
task sets. This makes sense, as our method for generating
utilizations achieves an average total of m+1

2 , exactly the guar-
anteed bound. As both P-EDF and P-EDF-OPT first attempt
to partition tasks according to their maximum safe periods,
their schedulability rates are equivalent, and are reflected by
the upper surface; even with 16 tasks on 32 cores, the heuristic
successfully schedules 94.6% of the task systems.

Fig. 8b–d show the median ratio of the control cost achieved
by each approach to that of fluid scheduling; a ratio of 1
is therefore optimal. Notice that P-EDF-U obtains a slightly
better control cost than P-EDF; P-EDF-U should therefore
be preferred over P-EDF unless the system is deemed un-
schedulable by the utilization bound. However, P-EDF-OPT
achieves the lowest cost ratio by far; despite its higher runtime
complexity, it is the preferred approach for offline allocation.

B. Evaluation of Control Safety
We evaluated the safety provided by our approach on

a nonlinear flight dynamics model. The flight dynamics of
an aircraft can be decomposed into lateral and longitudinal
components. The longitudinal component has state variable
x1(t) ∈ R4, where the states represent airspeed, angle of
attack, body pitch rate, and pitch angle. The control input is
scalar and equal to the elevator command. We use the textbook
longitudinal dynamics given by [35]:

ẋ1(t) =


Zα/V Zα 0 Zδ

Mα/Zα Mq

(
Mδ −Mα

Zδ
Zα

)
0

0 0 0 1
0 0 −ω2 −2ζω

x1(t)

+

 0
0
0
ω2

u1(t) (20)

30405060708090100

Number of Tasks

246810121416
Number of Cores

0.0

0.2

0.4

0.6

0.8

1.0Schedulability (%
)

(a) Schedulability Rates
30405060708090100

Number of Tasks

246810121416
Number of Cores

1.00

1.05

1.10

1.15

1.20

Cost Ratio

(b) Cost Ratio: P-EDF
30405060708090100

Number of Tasks

246810121416
Number of Cores

1.00

1.04

1.08

1.12

1.16

Cost Ratio

(c) Cost Ratio: P-EDF-U
30405060708090100

Number of Tasks

246810121416
Number of Cores

1.000

1.001

1.002

1.003

1.004

Cost Ratio

(d) Cost Ratio: P-EDF-OPT.

Fig. 8: Comparison of partitioned EDF core allocation and period assignment approaches.

Consistent with [35], we choose Zα=−1.053, Zδ=−0.0343,
Mα=−2.33, Mq=−1.033, Mδ=−1.17, V=329, ω=26π, and
ζ=0.6. The lateral component has state variable x2(t) ∈ R4,
where the states represent yaw rate, roll rate, roll angle, and
yaw angle. The control inputs u(t) ∈ R2 are the aileron and
rudder angles. The nonlinear lateral dynamics are given by

ẋ2(t)

=


ϕ1(x)

1
V0

(Yβ [x2]2 + Yp[x2]3 + Yr[x2]4) +
g cos θ0

V0
sin [x2]1

Lβ [x2]2 + Lp[x2]3 + Lr[x2]4
Nβ [x2]2 +Np[x2]3 +Nr[x2]4



+


0 0

Yail
V0

Yrud
V0

Lail Lrud

Nail Nrud

u2(t) (21)

where

ϕ1(x) = [x2]3 cosα0 − rs sinα0

+ tan θ0q0 sin [x2]1 + ([x2]4 cosα0 + [x2]3 sinα0) cos [x2]1

and [x2]j denotes the jth component of [x2]. We define the
safety constraint for the systems as x1(t)

⊤x1(t) ≤ 1 and
x2(t)

⊤x2(t) ≤ 1, modeling the requirement that both the
lateral and longitudinal components must remain sufficiently
close to the desired equilibrium point. We consider a scenario
in which a single processor is used to compute the control in-
puts for the lateral and longitudinal modes. We use the backup
safe controller architecture defined in §III-B. The nominal
and backup controllers for each subsystem are constructed as
follows. For each i = 1, 2, we construct a stabilizing control
law ui = −Kixi by solving an infinite-horizon LQR problem∫ ∞

0

xi(t)
⊤Qxi(t) + ui(t)

⊤Rui(t) dt (22)

with Q = 10−3I and R = I . For the nonlinear lateral
dynamics, we solve Eq. (22) using the linearization of Eq. (21)
around the origin. For the longitudinal dynamics, we assume
that the goal of the system is to track a step reference
z = (0 0 0.5 0)⊤, and hence define the nominal control law
µN
1 (x1) = −K1x1 +N1z, where N1 is chosen to ensure con-

ference to the desired reference value (see, e.g., [36]). The
safe backup control law is given by µB

1 (x1) = −K1x1. For the
lateral dynamics, we assume that the goal of the system is to
stabilize the system state to 0, and hence define both the nom-
inal and backup control laws as µN

2 (x2) = µB
2 (x2) = −K2x2.

To construct the control barrier functions, for each i = 1, 2,
we let bi(xi) = ci − x⊤i Pixi, where Pi denotes the positive
definite solution to the Algebraic Riccati Equation [37]

F⊤
i Pi + PiFi − PiGiR

−1G⊤
i Pi +Q = 0.

The term x⊤i Pixi is equal to the value function of the
infinite-horizon LQR problem (22), while ci is chosen as
the largest possible value of c satisfying {x : x⊤Pix ≤ c} ⊆
{x : x⊤x ≤ 1}. For more details on this approach for con-
structing CBFs, see [38]. We chose representative control cost
parameters as Ai = Bi = 1 for both systems. For switching to
the safe backup mode, we chose a threshold representing close
proximity to the edge of the safe region: βi = 0.9ci. For these
efficient controllers, we assume an execution time Ci = 10µs.

We first computed the control parameters for this sys-
tem model according to the methods in §III. For the lon-
gitudinal dynamics, the nominal controller parameters are
ρN1 =0.5, θN1 =3.6× 103, ψN

1 =3.6× 103, Tmax,N
1 =5× 10−5s

and the backup controller parameters are ρB1 =0.467, θB1 =237,
ψB
1 =237, and Tmax,B

1 =9× 10−4. For the lateral dynamics,
nominal parameters are ρN2 =0.5, θN2 =2.1826, ψN

2 =2.1826,
Tmax,N
2 =0.0573s, and βN

2 =2.185 · 10−4 and backup parame-
ters are ρB2 =0.5, θB2 =2.231, ψB

2 =2.231, and Tmax,B
2 =0.056s.

We then simulated the system trajectories under this control
model. The simulation results are shown in Figure 9. The value
of ||x1(t)||2 is shown in Figure 9(a). Since the target state
lies outside the safe region {x : b1(x) ≥ 0}, the nominal
controller will steer the system towards the safety boundary.
When b1(x1(t)) < β1, the backup controller is engaged to
steer the system back towards the interior of the safe region.
This leads to the oscillating behavior observed in the figure.
The lateral dynamics, shown in Figure 9(b), are governed
by the stabilizing LQR controller and remain within the safe
region over the duration of the simulation.

VI. RELATED WORK

As early as 1996, Seto et al. considered how to ensure
feasible scheduling of real-time control tasks while optimizing
control performance [8]. They presented an integrated ap-
proach to control and scheduling design, in which relationships
between task periods and control performance are modeled
explicitly, along with lower bounds on tasks’ periods (upper
bounds on frequency). Although they also considered cost
functions of the form given by Eq. (12), the work presented
in our paper considers both upper and lower bounds on
task periods, explicitly framing ranges of safely exploitable

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

Time (s)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
||x

1
(t

)|
|

Safety of Longitudinal Dynamics

0 1 2 3 4 5 6 7 8 9 10

Time (s)

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

||x
2
(t

)|
|

Safety of Lateral Dynamics

Fig. 9: Simulation of a nonlinear aircraft dynamics model in which the decomposed longitudinal and lateral dynamics are controlled by the
same processor. For both longitudinal states x1(t) and lateral states x2(t), the safety constraint is to satisfy ||x1(t)||2 ≤ 1 and ||x2(t)||2 ≤ 1
for all t. The longitudinal states x1(t) have an additional reference tracking objective. Left: Plot of ||x1(t)|| for the longitudinal dynamics.
The controller switches between nominal and safe backup modes as it approaches the safety envelope. Right: Plot of lateral dynamics. The
agent states remain within the safe region.

adaptation. In 2001, Aydin et al. [39] considered concave
reward functions more generally, but only provided linear-time
optimization techniques for linear reward functions. By using
the KKT conditions shown in Fig. 4 to linearize the problem,
we enable the numerical method in §IV-F for schedulability
analysis beyond a static utilization bound.

Recently, Gifford et al. published new results [40] on co-
design of real-time control and scheduling for multi-mode
systems and provided a summary of other related work on co-
design more broadly across the intervening decades: [41]–[54].
In [55], [56], conditions on the sampling frequency were intro-
duced to ensure closed-loop stability of a linear system, which
is distinct from the safety properties considered in our work. A
more complex scheduling/co-design formulation was proposed
in [57], [58], treating the control inputs and sample times as
optimization variables in a non-convex optimization problem.
In this paper, we model control and scheduling parameters
jointly, so as to minimize control cost while maintaining
schedulability and control safety, both (1) within a single
controller as it transits sub-regions of the system state space
in which the parameters may differ, and (2) across transitions
between high-performance controllers and more conservative
backup controllers. Also recently, Baruah et al. considered
control-scheduling co-design involving mitigative controllers,
which can accommodate delays in one iteration of the control
loop through corrective actions in the subsequent one(s) [59].
That introduces a novel form of workload elasticity that they
show can be integrated rigorously with real-time scheduling
assurance. In this paper we model period-elastic adaptation,
though extending the constrained-optimization approach pre-
sented here to consider both period-elastic and workload-
elastic adaptation appears achievable as future work.

Safety verification of cyber-physical systems also has seen
recent interest [19], [20]. Much such work assumes a CPS
either operates in continuous or discrete time with a fixed
sampling interval. The most closely related works present
control barrier functions for sampled-data systems [9]–[12] but

assume the sample periods are given and aim for robustness
bounds on the CBFs to ensure that sampling effects do not
compromise safety. We instead present constraints on the
sampling frequency to ensure safety with a given control law,
which is new. Moreover, our SOS-based safety constraints do
not to our knowledge appear in the existing literature. Our
approach is also novel in bounding delay between sampled
state (at time ti,j) and application of a control signal based on
the next sample (at time t′i,j+1). Most existing work on delay-
based period assignment, e.g. in [60], bounds the sample/apply
delay within a single job interval ti,j to t′i,j .

VII. CONCLUSIONS AND FUTURE WORK

This paper has presented a new formalization of the period-
icity requirements for control tasks to guarantee avoidance of
unsafe portions of the system state space. Control tasks also
must be schedulable so that these requirements are met. This
reinforces the fundamental connection between schedulability
and safety, with a framework to guarantee that control signals
are applied in a timely manner, even when the system transi-
tions online between nominal and more conservative backup
controllers. We express this as a constrained optimization
problem, where task periods are assigned to minimize control
cost within the implied safety and schedulability constraints.

As future work, we will also consider schedule-driven
control, developing controller models informed by the com-
putational resources of the system. We will explore other co-
design principles and control strategies, including controllers
for which glitches in internal state tracking may need to be
detected and corrected. Moreover, we will address fundamental
scheduling questions raised by our approach, e.g., how the de-
lay bound changes if tasks’ deadlines may be shorter than their
periods, and does this enable extended periods and thus better
schedulability; what other forms of control cost functions can
be treated similarly; and can we leverage predictions or semi-
clairvoyant mixed-criticality theory to be more optimistic in
our assignment of execution times across transitions?

ACKNOWLEDGMENTS

This research was supported by NSF grants CNS-
2303563, CMMI-2418806, CNS-2229290, NASA award
80NSSC21K1741, and a WashU OVCR seed grant.

REFERENCES

[1] C. L. Liu and J. W. Layland, “Scheduling algorithms for multiprogram-
ming in a hard-real-time environment,” Journal of the ACM (JACM),
vol. 20, no. 1, pp. 46–61, 1973.

[2] J. Solem, “The application of microrobotics in warfare,” 9 1996.
[Online]. Available: https://www.osti.gov/biblio/369704

[3] J. J. Abbott, Z. Nagy, F. Beyeler, and B. J. Nelson, “Robotics in the
small, part i: Microbotics,” IEEE Robotics & Automation Magazine,
vol. 14, no. 2, pp. 92–103, 2007.

[4] K. Y. Ma, P. Chirarattananon, S. B. Fuller, and R. J. Wood,
“Controlled flight of a biologically inspired, insect-scale robot,”
Science, vol. 340, no. 6132, pp. 603–607, 2013. [Online]. Available:
https://www.science.org/doi/abs/10.1126/science.1231806

[5] J. Kim, H. Kim, K. Lakshmanan, and R. Rajkumar, “Parallel scheduling
for cyber-physical systems: Analysis and case study on a self-driving
car,” in 2013 ACM/IEEE International Conference on Cyber-Physical
Systems (ICCPS), 2013, pp. 31–40.

[6] A. Li, H. Liu, J. Wang, and N. Zhang, “From timing variations to perfor-
mance degradation: Understanding and mitigating the impact of software
execution timing in slam,” in IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 2022.

[7] A. Li, J. Wang, S. Baruah, B. Sinopoli, and N. Zhang, “An empirical
study of performance interference: Timing violation patterns and im-
pacts,” in 2024 Real-Time and Embedded Technology and Applications
Symposium (RTAS). IEEE, 2024.

[8] D. Seto, J. Lehoczky, L. Sha, and K. Shin, “On task schedulability in
real-time control systems,” in 17th IEEE Real-Time Systems Symposium,
1996, pp. 13–21.

[9] G. Bahati, P. Ong, and A. D. Ames, “Sample-and-hold safety with
control barrier functions,” in 2024 American Control Conference (ACC).
IEEE, 2024, pp. 5169–5176.

[10] J. Breeden, K. Garg, and D. Panagou, “Control barrier functions in
sampled-data systems,” IEEE Control Systems Letters, vol. 6, pp. 367–
372, 2021.

[11] L. Niu, H. Zhang, and A. Clark, “Safety-critical control synthesis for
unknown sampled-data systems via control barrier functions,” in 2021
60th IEEE Conference on Decision and Control (CDC). IEEE, 2021,
pp. 6806–6813.

[12] P. S. Oruganti, P. Naghizadeh, and Q. Ahmed, “Robust control barrier
functions for sampled-data systems,” IEEE Control Systems Letters,
2023.

[13] L. Sha, “Dependable system upgrade,” in Proceedings 19th IEEE Real-
Time Systems Symposium (Cat. No.98CB36279), 1998, pp. 440–448.

[14] R. Chandra, X. Liu, and L. Sha, “On the scheduling of flexible and
reliable real-time control systems,” Real-Time Systems, vol. 24, no. 2,
pp. 153–169, Mar 2003. [Online]. Available: https://doi.org/10.1023/A:
1021726418716

[15] S. Baruah and A. Burns, “Sustainable scheduling analysis,” in 2006 27th
IEEE International Real-Time Systems Symposium (RTSS’06). IEEE,
2006, pp. 159–168.

[16] S. Sastry, Nonlinear systems: analysis, stability, and control. Springer
Science & Business Media, 2013, vol. 10.

[17] A. Clark, “Verification and synthesis of control barrier functions,” in
2021 60th IEEE Conference on Decision and Control (CDC). IEEE,
2021, pp. 6105–6112.

[18] W. Zhao, T. He, T. Wei, S. Liu, and C. Liu, “Safety index synthesis via
sum-of-squares programming,” in 2023 American Control Conference
(ACC). IEEE, 2023, pp. 732–737.

[19] O. So, Z. Serlin, M. Mann, J. Gonzales, K. Rutledge, N. Roy, and C. Fan,
“How to train your neural control barrier function: Learning safety filters
for complex input-constrained systems,” in 2024 IEEE International
Conference on Robotics and Automation (ICRA). IEEE, 2024, pp.
11 532–11 539.

[20] A. D. Ames, S. Coogan, M. Egerstedt, G. Notomista, K. Sreenath, and
P. Tabuada, “Control barrier functions: Theory and applications,” in 2019
18th European control conference (ECC). IEEE, 2019, pp. 3420–3431.

[21] Y. Chen, M. Jankovic, M. Santillo, and A. D. Ames, “Backup control
barrier functions: Formulation and comparative study,” in 2021 60th
IEEE Conference on Decision and Control (CDC). IEEE, 2021, pp.
6835–6841.

[22] A. R. Kumar, K.-C. Hsu, P. J. Ramadge, and J. F. Fisac, “Fast,
smooth, and safe: implicit control barrier functions through reach-avoid
differential dynamic programming,” IEEE Control Systems Letters, 2023.

[23] A. Papachristodoulou and S. Prajna, “A tutorial on sum of squares
techniques for systems analysis,” in Proceedings of the 2005, American
Control Conference, 2005. IEEE, 2005, pp. 2686–2700.

[24] H. Khalil, Nonlinear systems. Prentice Hall, 2002.
[25] K. Shin, C. Krishna, and Y.-H. Lee, “A unified method for evaluating

real-time computer controllers and its application,” IEEE Transactions
on Automatic Control, vol. 30, no. 4, pp. 357–366, 1985.

[26] W. Karush, “Minima of functions of several variables with inequalities
as side constraints,” M. Sc. Dissertation. Dept. of Mathematics, Univ. of
Chicago, 1939.

[27] H. KUHN, “Nonlinear programming,” in Proc. 2nd Berkeley Symposium,
1951. Univ. of California Press, 1951, pp. 481–492.

[28] S. K. Baruah, N. K. Cohen, C. G. Plaxton, and D. A. Varvel,
“Proportionate progress: A notion of fairness in resource allocation,”
Algorithmica, vol. 15, no. 6, pp. 600–625, Jun 1996. [Online].
Available: https://doi.org/10.1007/BF01940883

[29] J. M. Calandrino, H. Leontyev, A. Block, U. C. Devi, and J. H.
Anderson, “LITMUSRT : A testbed for empirically comparing real-
time multiprocessor schedulers,” in 2006 27th IEEE International Real-
Time Systems Symposium (RTSS’06), 2006, pp. 111–126.

[30] M. Sudvarg, C. Gill, and S. Baruah, “Improved implicit-deadline
elastic scheduling,” in Proceedings of the 14th IEEE International
Symposium on Industrial Embedded Systems (SIES 2024). IEEE,
2024. [Online]. Available: https://sudvarg.com/publications/SIES2024
improved implicit elastic.pdf

[31] K. Agrawal, S. Baruah, and A. Burns, “Semi-clairvoyance in mixed-
criticality scheduling,” in 2019 IEEE Real-Time Systems Symposium
(RTSS). IEEE, 2019, pp. 458–468.

[32] G. C. Buttazzo, G. Lipari, M. Caccamo, and L. Abeni, “Elastic
scheduling for flexible workload management,” IEEE Transactions on
Computers, vol. 51, no. 3, pp. 289–302, Mar. 2002. [Online]. Available:
http://dx.doi.org/10.1109/12.990127

[33] P. Emberson, R. Stafford, and R. Davis, “Techniques for the synthesis
of multiprocessor tasksets,” in WATERS workshop at the Euromicro
Conference on Real-Time Systems, Jul. 2010, pp. 6–11.

[34] D. Griffin, I. Bate, and R. I. Davis, “Generating Utilization Vectors for
the Systematic Evaluation of Schedulability Tests,” in 2020 IEEE Real-
Time Systems Symposium (RTSS), 2020, pp. 76–88.

[35] E. Lavretsky and K. A. Wise, “Robust adaptive control,” in Robust and
adaptive control: With aerospace applications. Springer, 2012, pp.
317–353.

[36] C.-T. Chen, Linear system theory and design. Oxford University Press,
1984.

[37] D. E. Kirk, Optimal control theory: an introduction. Courier Corpora-
tion, 2004.

[38] A. Clark, “A semi-algebraic framework for verification and synthesis of
control barrier functions,” To appear in IEEE Transactions on Automatic
Control (TAC), 2024.

[39] H. Aydin, R. Melhem, D. Mossé, and P. Mejia-Alvarez, “Optimal
reward-based scheduling for periodic real-time tasks,” IEEE Transac-
tions on Computers, vol. 50, no. 2, pp. 111–130, 2001.

[40] R. Gifford, F. Galarza-Jimenez, L. Phan, and M. Zamani, “Decntr:
Optimizing safety and schedulability with multi-mode control and
resource allocation co-design,” in 30th IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS), 2024.

[41] K. Arzen, A. Cervin, J. Eker, and L. Sha, “An introduction to control and
scheduling co-design,” in Conference on Decision and Control (CDC),
vol. 5, 2000, p. 4865–4870.

[42] M. Schmitz, B. Al-Hashimi, and P. Eles, “A co-design methodology
for energy-efficient multi-mode embedded systems with consideration
of mode execution probabilities,” in Design, Automation and Test in
Europe, 2003, p. 960–965.

[43] D. Simon, D. Robert, and O. Sename, “Robust control/scheduling
codesign: application to robot control.” in 11th IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS), 2005, p.
118–127.

[44] M. Gaid, A. Cela, and Y. Hamam, “Optimal integrated control and
scheduling of networked control systems with communication con-
straints: application to a car suspension system,” IEEE Transactions on
Control Systems Technology, vol. 14, no. 4, p. 776–787, 2006.

[45] G. Buttazzo, M. Velasco, and P. Marti, “Quality-of-control management
in overloaded real-time systems,” IEEE Transactions on Computers,
vol. 56, no. 2, p. 253–266, 2007.

[46] R. Schneider, D. Goswami, S. Zafar, M. Lukasiewycz, and
S. Chakraborty, “Constraint-driven synthesis and tool-support for flexray
based automotive control systems,” in IEEE/ACM/IFIP international
conference on Hardware/software codesign and system synthesis, 2011,
p. 139–148.

[47] D. Soudbakhsh, L. Phan, A. Annaswamy, O. Sokolsky, and I. Lee, “Co-
design of control and platform with dropped signals,” in ACM/IEEE
International Conference on Cyber-Physical Systems (ICCPS), 2013.

[48] H. Chwa, K. Shin, and J. Lee, “Closing the gap between stability
and schedulability: A new task model for cyber-physical systems,”
in 24th IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS), 2018, p. 327–337.

[49] A. Gujarati, M. Nasri, and B. Brandenburg, “Quantifying the resiliency
of fail-operational real-time networked control systems,” in Euromicro
Conference on Real-Time Systems (ECRTS), 2018.

[50] D. Soudbakhsh, L. Phan, A. Annaswamy, and O. Sokolsky, “Codesign
of arbitrated network control systems with overrun strategies,” IEEE
Transactions on Control of Network Systems, vol. 5, no. 1, p. 128–141,
2018.

[51] Q. Zhu and A. Sangiovanni-Vincentelli, “Codesign methodologies and
tools for cyber–physical systems,” Proceedings of the IEEE, vol. 106,
no. 9, p. 1484–1500, 2018.

[52] L. Scheuvens, A. H¨oßler, T. Barreto, and G. Fettweis, “Wireless control
communications co-design via application-adaptive resource manage-
ment,” in 5G World Forum (5GWF), 2019, p. 298–303.

[53] X. Dai, S. Zhao, Y. Jiang, X. Jiao, X. Hu, and W. Chang, “Fixed
priority scheduling and controller co-design for time-sensitive networks.”
in Conference on Computer-Aided Design, 2020, p. 1–9.

[54] D. Roy, S. Ghosh, Q. Zhu, M. Caccamo, and S. Chakraborty, “Good-
spread: Criticality-aware static scheduling of cps with multi-qos re-
sources,” in 2020 IEEE Real-Time Systems Symposium (RTSS), 2020,
pp. 178–190.

[55] S. Reimann, W. Wu, and S. Liu, “Real-time scheduling of pi control
tasks,” IEEE Transactions on Control Systems Technology, vol. 24, no. 3,
pp. 1118–1125, 2015.

[56] P. Marti, C. Lin, S. A. Brandt, M. Velasco, and J. M. Fuertes, “Draco:
Efficient resource management for resource-constrained control tasks,”
IEEE Transactions on Computers, vol. 58, no. 1, pp. 90–105, 2008.

[57] M. E. M. B. Gaid, A. S. Cela, and Y. Hamam, “Optimal real-time
scheduling of control tasks with state feedback resource allocation,”
IEEE Transactions on Control Systems Technology, vol. 17, no. 2, pp.
309–326, 2008.

[58] D. Gorges, M. Izak, and S. Liu, “Optimal control of systems with
resource constraints,” in 2007 46th IEEE Conference on Decision and
Control. IEEE, 2007, pp. 1070–1075.

[59] S. Baruah, M. Hosseinzadeh, I. Kolmanovsky, and B. Sinopoli, “Adap-
tive scheduling for real-time control,” in Proceedings of the 32nd In-
ternational Conference on Real-Time Networks and Systems, ser. RTNS
’24. New York, NY, USA: Association for Computing Machinery,
2024, p. 1–10.

[60] E. Bini and A. Cervin, “Delay-aware period assignment in control
systems,” in 2008 Real-Time Systems Symposium, 2008, pp. 291–300.

