
Call for Collaboration: Contributing to
Multi-Messenger Astrophysics

Marion Sudvarg∗†, Ye Htet∗, Roger D. Chamberlain∗, Jeremy D. Buhler∗, James H. Buckley†
∗Department of Computer Science and Engineering, †Department of Physics

Washington University in St. Louis
{msudvarg, htet.ye, roger, jbuhler, buckley}@wustl.edu

Abstract—In multi-messenger astrophysics, signals of multiple
types (e.g., gravitational waves, neutrinos, electromagnetic waves)
are combined in an effort to learn more about the observed phe-
nomena of interest. The Advanced Particle-astrophyics Telescope
(APT) is a mission concept for a space-borne instrument that
detects gamma-ray bursts (GRBs) omnidirectionally, facilitating
multi-messenger observations by identifying and localizing ce-
lestial events of interest. In this presentation, we describe the
current status of on-instrument computations for the Antarctic
Demonstrator for APT (ADAPT) pursuant to guiding prompt
follow-up observations of transient events. We also describe open
problems and the challenges of extending ADAPT’s computation
to the future APT instrument. We encourage contributions and
collaboration from members of the real-time systems community.

I. INTRODUCTION

Background and Motivation. The astrophysics community has
a strong interest in observing transient astrophysical phenom-
ena using multiple modalities. This multi-messenger approach
may include, e.g., gravitational waves, electromagnetic waves,
neutrinos, and cosmic rays [1], [2]. Because these transients
can be short-lived [3], fast detection and localization is key to
supporting cooperative multi-modal observation.

The Advanced Particle-astrophysics Telescope (APT) [4]
mission concept is a proposed gamma-ray and cosmic-ray
observatory that will orbit the Sun-Earth L2 Lagrange Point,
which avoids obstruction by the earth and ensures a nearly
omnidirectional, 4π-steradian field of view (FoV). Its goals
include prompt detection and localization of gamma-ray bursts
(GRBs), which are early indicators of, e.g., neutron star and
black hole mergers, blazar and magnetar flares, and super-
novae. APT’s localizations will permit follow-up observation
of such events by optical telescopes, which typically have quite
narrow FoVs. It is predicted to localize GRBs with better than
1° accuracy and computational latency under 1 second [5].

Nonetheless, APT may supplement point localization with
more detailed likelihood maps that provide a spatial proba-
bility distribution over possible locations. This is especially
important for its Antarctic Demonstrator (ADAPT), which has
greater localization uncertainty. The most likely regions of the
map can then be searched by fast-slewing optical telescopes
to localize a source for subsequent observations.

Factors contributing to delays between detection and sec-
ondary observations include time to localize/map the transient,
communication latency to follow-up telescopes (which is par-

Detector
ASIC
Array

FPGA
CPUGbE

Packet 
Handler

Signal 
Processing Centroiding Compton 

Reconstruction

Point-Source 
Localization

Each Photon
Likelihood 
Mapping

FPGA

Fig. 1. ADAPT’s computational pipeline for GRB localization.

ticularly challenging for space-based instruments like APT),
and the time for these telescopes to physically search the sky
as directed by a likelihood map. The computational pipeline
that transforms raw sensor data into localizations (see Fig. 1)
must therefore execute on the instrument (in space) [4] and
meet significant size, weight, and power (SWaP) constraints.

Current Status. This presentation describes several important
computational elements associated with APT and their on-
going development for ADAPT. §II outlines our progress on
improved trajectory reconstruction for individual gamma rays,
a process which uses FPGAs to read out and process signals
from digitizer ASICs. From resulting estimates of the positions
and energies of interactions in the detector, each gamma-ray
photon’s initial trajectory is constrained to a ring in the sky.
§III details our method for point-source localization using the
resulting collection of rings. While our original method based
on least-squares refinement is effective in simulation for APT,
ADAPT’s smaller size and exposure to atmospheric back-
ground radiation give rise to greater uncertainty. To address
this, we augment our iterative approach with machine learning.
Furthermore, in §IV, we also plan to generate likelihood maps
of the GRB’s location; these will then be transmitted to optical
telescopes for subsequent physical search.

Open Problems. Challenges persist in developing our compu-
tational pipeline for ADAPT, and there remain open problems
related to deployment on the future APT instrument, which is
larger, has more sensors, and demands higher readout rates.
In §II, we motivate the need for efficient, FPGA-based noise-
suppression and photon-counting algorithms. The future APT
mission will need improved capabilities to transmit result data
from several dozen FPGAs for aggregation on a CPU. In §III,
we describe ADAPT’s iterative ML-based reconstruction and
localization loop, and connect it to existing work on concur-
rent, real-time execution of neural network models and recent
work on IDK cascades [6]. In §IV, we discuss opportunities for
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Fig. 2. A reconstructed Compton ring (from [11]).

tradeoffs between computational workload and precision of the
probability maps that ADAPT will generate and consider the
implications when portions of the spectral fitting and mapping
algorithms are offloaded to GPU or FPGA accelerators, which
may need to be shared with mission- or safety-critical recurrent
tasks. For all of these problems, we welcome contributions
and collaboration with other research groups in the real-time
systems and operating systems communities.

Attribution. Many of the details of ADAPT’s current status
closely follow an invited paper at this year’s CompSpace
special session at the Computing Frontiers conference [7].

II. TRAJECTORY RECONSTRUCTION

The upcoming ADAPT and proposed APT telescopes infer
a GRB’s direction by combining the trajectories of individual
gamma-ray photons that interact with them. Here we give an
overview of the instrument designs and methods to reconstruct
gamma-ray trajectories from their raw sensor data.

The APT and ADAPT Detectors are constructed with layers
of scintillating tiles that emit visible light when incoming
gamma-ray photons scatter within them. This light is first cap-
tured by perpendicular arrays of wavelength-shifting (WLS)
optical fibers that line the top and bottom surfaces of the tiles,
then measured by silicon photomultipliers (SiPMs) placed at
their ends [8], [9]. This overlay of 1-dimensional fiber arrays
into a 2-dimensional mesh, with the relative position of the tile,
allows us to resolve the 3-dimensional position r = (x, y, z) of
each interaction. Additional SiPMs, placed around the edges of
the tile layers, improve light collection and provide an estimate
of the energy E deposited with each interaction.

Both will fly with onboard computational hardware, includ-
ing waveform digitizer ASICs to sample and digitize analog
signals from the SiPMs [10]. FPGAs process the ASIC data,
reducing it to spatial coordinates and energy measurements. A
processor builds the final set of interactions (ri, Ei) associated
with each gamma ray, then uses these to perform Compton
reconstruction, constraining the gamma-ray photon’s initial
trajectory to a ring of the form illustrated in Fig. 2.

FPGA Pipeline Prototype. ADAPT’s digitizer ASICs continu-
ously sample the output voltages from the SiPM preamplifiers
and store the values in a ring buffer with an analog memory
depth of ≥256 entries. When a gamma ray is detected, all
ASICs are triggered simultaneously to digitize and read out
these values. Given the speed at which the gamma-ray photon
moves within the detector, all of its interactions are captured
in a single readout and cannot be temporally disambiguated.
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Fig. 3. ADAPT’s FPGA pipeline.

We refer to the collection of data from a single gamma ray’s
interactions as an “event.” To handle streaming event arrivals,
a finite state machine (FSM) packet handler reads out the
serial interface from the digitizer ASICs, providing flexibility
to handle multiple types of waveform digitizers. ADAPT is
expected to demonstrate the capabilities of two ASICs: the
ALPHA [12], developed by collaborators at the University of
Hawai‘i at Mānoa, and the HDSoC from Nalu Scientific, both
based on the TARGET ASIC [13].

Our pipeline first performs pedestal subtraction, removing
the unique capacitive charge pedestal inherent to each of the
ASIC’s analog memory cells from the digitized readouts to
yield the true sampled signal values. To infer the number of
photons captured by each fiber or edge detector’s SiPMs, a
signal integration stage sums over digitized output values.
To estimate the number of photons captured, a gain correc-
tion stage multiplies the integrated value by a per-channel
fractional gain, then subtracts the expected dark count (spon-
taneous SiPM impulses due to thermally-generated electrons)
for the duration of the integration window. Zero-suppression
then sets sufficiently low photon counts to zero, under the
assumption that these values may be caused by noise effects
in the circuit or variation in dark counts.

Zero-suppressed photon counts from multiple ASICs are
merged into a single array for each WLS fiber plane. To then
derive interaction coordinates from each array, island detec-
tion and centroiding take the mean of WLS fiber positions,
weighted by photon intensity, over islands of adjacent non-
zero channels. The complete pipeline is illustrated in Fig. 3.

In [14], we described several HLS-based optimization tech-
niques for an earlier version of this pipeline, achieving a
throughput of >2× 105 events per second in simulation, even
with a conservative 100 MHz system clock. New (or modified,
in the case of island detection and centroiding) components
since that work are marked in dark blue in Fig. 3.

Compton Reconstruction. Using a CPU, we next build a set
of interactions, or hits, (ri, Ei) for each individual event.
From these, we reconstruct the gamma-ray photon’s trajectory
to constrain the burst’s direction in a process referred to as
Compton reconstruction [15]. For a gamma-ray photon that
scatters following an interaction with an electron, the Compton
law gives the relationship between the cosine η of its scattering
angle and its energy before and after the interaction. Given
the vector c between its two interactions and this η value,
we can constrain the gamma ray’s source direction s to a
circle projected on the unit sphere, as illustrated in Fig. 2.
Spatial and energy measurement errors spread the circle into
a ring, or annulus; by propagation of error, we can estimate
the uncertainty dη in its radius [16], [17].

Reconstruction is challenging because the set of hits is tem-
porally unordered due to the gamma ray’s speed-of-light travel
within the instrument. We therefore use the methods described
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Fig. 4. 2 µs digitized waveform from an optical fiber that captured 5 photons.

in [15] to infer the most likely ordering of hits. We developed
an accelerated branch-and-bound tree search algorithm [10],
[16] that achieves a throughput of around 3× 105 events per
second when utilizing all 4 cores of ADAPT’s 1.92 GHz Intel
Atom 3845 CPU-based flight computer [18].

Open Challenge: Photon Counting. The energy deposited by
a scattering gamma ray is low enough that only a handful
of optical photons (typically <20) are transmitted by each
optical fiber. For example, Fig. 4 shows a simulated waveform
read out from a fiber; of the six peaks, five correspond to
captured photons, while one is a dark count. Photon counts
inferred from signal integration are thus inaccurate given
the low SNR. Alternative FPGA-based techniques for noise
suppression and photon counting — e.g., combinations of
threshold-based methods [19], filters, and deep-learning based
approaches — remain an open challenge. In particular, we
would like to explore combinations of such methods, including
synthesis of multiple kernels with different combinations of
filters to be dynamically swapped out depending on resource
availability and latency/throughput requirements.

Open Challenge: Data Rates. ADAPT will produce around
200 KB–1 MB of raw data for a single event; during a
burst, several thousand events trigger every second. To sustain
these high data rates, a hierarchy of FPGAs implements
the preprocessing pipeline to handle thousands of readout
channels. Ultimately, 13 FPGAs transmit reduced data to
a CPU via Gigabit Ethernet. The larger APT instrument
will produce ∼100× more data per event while triggering
∼10–100× faster. We anticipate that at least 60 FPGAs will
send data, though perhaps not all of them for every event.
Addressing this challenge within the constraints imposed by
the space-based computational environment may require Time-
Sensitive Networking (TSN). We will alternatively consider a
dedicated FPGA with access to unified CPU memory or cache
fabric that performs event building and dispatches Compton
reconstruction workloads to CPU cores directly, building upon
the principles of CAESAR [20].

III. POINT-SOURCE LOCALIZATION

Localization aims to determine the most likely source direc-
tion for a GRB using the Compton rings from reconstruction.

Approach. Localization fixes a GRB’s source direction s by
“intersecting” multiple Compton rings. In principle, three rings
suffice to fix s; however, we must contend with both the uncer-
tainties dη of each ring and the fact that many observed rings
(≥50% for ADAPT) arise from unrelated, diffuse background
radiation. As described in [5], ADAPT’s localization operates
in two stages. The first stage, approximation, selects the most
likely direction s0 from a set of candidates. The second stage,
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Fig. 5. ADAPT GRB localization pipeline (from [11]).
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Fig. 6. Localization accuracy vs. polar angle with/without ML (from [11]).

refinement, uses an iterative least-squares approach to adjust
s0 until it converges to a maximum-likelihood estimate s.

Use of Machine Learning. Our recent work [11] supplements
ADAPT’s localization pipeline with machine learning infer-
ence designed to address background noise and uncertainty
estimation. We introduce two multilayer perceptron models,
the background network and the dEta network. The first clas-
sifies a Compton ring as originating from either the GRB or
the background, allowing background suppression; the second
more accurately estimates dη for the surviving Compton rings.
Each model takes as input the energy and position estimates of
interactions that gave rise to the ring, along with an estimate
of the GRB’s polar angle with respect to the detector z-axis.

Using the polar angle as an input has proved essential to
model accuracy, but it is not known a priori. We therefore
iterate between the basic localization computation — which
produces an estimated source direction ŝ — and then discard-
ing any input rings classified as background given ŝ. Once the
estimate ŝ converges, we re-estimate dη for all surviving rings
and obtain s with a final run of the core algorithm.

Validation. Fig. 6 summarizes experiments from [11] that
measure the impact of machine learning. These results measure
the accuracy with which ADAPT can localize simulated GRBs.
Using ML consistently improved localization accuracy, both
in the common case (68%ile error) and especially for outliers
(95%ile error). We also measured the computational cost on
ADAPT’s flight computer. Reconstruction and localization for
a representative bright, short burst required ∼220 ms.

Open Problem Area: ML in RT As evidenced by the re-
cent ML-RT Agenda (ECRTS’24 and ’25) and WMC (RTSS
’24) workshops, there is growing interest in using machine
learning safely and predictably in real-time systems. Our
iterative approach to ML-based GRB localization allows us to
trade off between accuracy and efficiency, but exploring this



Fig. 7. Partial likelihood map for GRB 140329295 from Fermi GBM catalog,
showing 99% containment region (from [7]). Lighter-colored pixels are more
likely to contain the GRB source. The red cross denotes the actual source.

tradeoff space is an open problem, especially when the neural
network models (which can exploit intra-task parallelism and
vectorization) must run concurrently with each other and with
safety-critical instrument- or satellite-control tasks. Several
of these concerns have been outlined in a recent paper by
Buttazzo [21]; we encourage members of the community with
expertise in these areas to collaborate. Moreover, there may be
opportunity to use IDK classifiers [6] for background rejection.
Effective scheduling for sequences of multiple IDK classifiers
(cascades) has garnered recent attention [22]–[25].

IV. LIKELIHOOD MAPPING

The techniques of §III identify one likely direction for a
GRB. To allow telescopes to search for an optical counterpart,
we will also communicate a likelihood map over its possible
location in the sky, as illustrated in Fig. 7.

Approach. Our mapping computation follows that of the
cosipy library [26] released for the planned Compton Spec-
trometer and Imager (COSI) mission. Mapping, like point-
source localization, begins with a set D of Compton rings,
each with a center vector, radius, and measured energy Em.
These parameters define the Compton data space (CDS) of
possible rings, which arise either from a source that appears
for time ∆t at location s or from background radiation.

The source and background are respectively characterized
by an instrument response R(s, Ei) and a background model
B. R and B each describe the expected number of rings in a
given volume within the CDS observed during time interval
∆t. R assumes that rings arise from photons of energy Ei

arriving from a GRB of unit intensity in source direction s,
while B assumes that they arise from the background. R and
B are derived empirically from extensive simulations.

To generate a likelihood map, we compare for each source
direction s the hypothesis Hs

1 that some portion of D arose
from a GRB point source at s, versus the null hypothesis H0

that D arose from background alone. For Hs
1 , the expected

number of rings produced in a given volume of CDS is
determined by R(s, Ei)·ρ+B, where ρ, the actual intensity of
the GRB, is unknown a priori and so must be fit to maximize
the likelihood. For both Hs

1 and H0, the observed number of
rings within a given volume of CDS is assumed to be Poisson
with that volume’s expectation. The map score for direction s
is the log-likelihood ratio of Hs

1 versus H0 given D.

Computational Cost. A key question is whether likelihood
map generation can be done in real time for short-duration

GRBs so that ADAPT and APT can coordinate with follow-
up telescopes seeking optical counterparts that could fade
within seconds. The computation is straightforward to paral-
lelize across events, and the response R and background B
are kept as arrays in DRAM for speed of access. We also
implemented multiresolution mapping [27], [28], in which
a map is produced at low resolution for the whole sky
and then refined only in areas with likelihood scores high
enough to plausibly contain the GRB. Selecting an appropriate
granularity of subdivision to provide sufficient map precision
to optical telescopes, while not introducing undue delays in
the transmission of the map, remains an open problem.

We tested our implementation on 17 simulated GRBs from
the 3rd COSI Data Challenge [29], using COSI’s instrument
response R and inferring the background B from three months
of simulated observations in low-earth orbit. We generated
likelihood maps with 12,288 HEALPix pixels (∼2° resolu-
tion), limiting output to the 90% containment region for the
source. On an 8-core Arm Cortex-A78AE (Nvidia Jetson
Orin NX), map generation consistently completed in under
200 ms. On 4 performance cores on ADAPT’s Intel Core
i7-13700TE CPU, it completes in under 100 ms. Further
improvements may arise from porting our implementation to
C++ and exploiting GPU or FPGA acceleration.
Challenges. Robust likelihood mapping for ADAPT and APT
requires two further advances: real-time inference of GRB
spectra, and efficient representation and inference of the
response R. Cosipy’s spectral estimation fits a model to
maximize the likelihood of the observed Compton rings, which
requires nonlinear optimization. It also assumes the GRB’s
source location is known, resulting in a circular dependence
with map generation. We will investigate simplified real-time
fitting approaches that do not assume a known source location.

The size of the instrument response R — several gigabytes
for even a low-resolution model — places large demands
on memory and data bandwidth. Ongoing research includes
compact machine-learning models that can approximate R.
We will also investigate efficient active-learning approaches
to infer R from fewer simulated photons.

V. OPEN PROBLEMS AND CALL FOR COLLABORATION

As we continue to develop the upcoming ADAPT instru-
ment, work toward the proposed APT mission, and coordinate
with ground-based optical telescopes for real-time follow-up
observations of astrophysical transients, several open problems
remain. These include (but are not limited to) development
of efficient FPGA-based signal processing algorithms; real-
time transmission of data from dozens of FPGAs to a CPU;
computational offloading of ML models and likelihood map-
ping to GPU or FPGA accelerators; efficient representation
and inference of the instrument response R; and runtime
platforms to coordinate, schedule, and execute these with
timing guarantees. The real-time systems community, with ex-
pertise in running latency-constrained applications atop SWaP-
constrained hardware, is particularly suited to addressing these
problems. We invite interested researchers to collaborate!
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