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Abstract

Component-based design encapsulates and isolates state and the oper-
ations on it, but timing semantics cross-cut these boundaries when a
real-time task’s control flow spans multiple components. Under priority-
based scheduling, inter-component control flow should be coupled with
priority information, so that task execution can be prioritized appro-
priately end-to-end. However, the CAmkES component architecture for
the seL4 microkernel does not adequately support priority propaga-
tion across intercomponent requests: component interfaces are bound
to threads that execute at fixed priorities provided at compile-time
in the component specification. In this paper, we present a new
library for CAmkES with a thread model that supports (1) multiple
concurrent requests to the same component endpoint; (2) propaga-
tion and enforcement of priority metadata, such that those requests
are appropriately prioritized; (3) implementations of Non-Preemptive
Critical Sections, the Immediate Priority Ceiling Protocol, and the
Priority Inheritance Protocol for components encapsulating critical
sections of exclusive access to a shared resource; and (4) extensions
of these mechanisms to support nested lock acquisition. We measure
overheads and blocking times for these new features, use existing the-
ory to discuss schedulability analysis, and present a new hyperbolic
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bound for rate-monotonic scheduling of tasks with blocking times that
allows tasks to be assigned non-unique priorities. Evaluations on both
Intel x86 and ARM platforms demonstrate that our library allows
CAmkES to provide suitable end-to-end timing for real-time systems.

Keywords: real-time systems, component middleware, priority protocols

1 Introduction

As the complexity of software systems has increased, component-based soft-
ware engineering has emerged as a key approach for providing structure,
modularity, and reusability in system design [1]. Components encapsulate
state, computation, and communication, allowing for (1) separation of func-
tional concerns and (2) isolation of resource utilization within components to
ensure timing and other para-functional properties, while allowing (3) sophis-
ticated behaviors to be realized, and (4) desired properties to be enforced
locally and end-to-end, through composition and coordination of multiple com-
ponents. To achieve all those benefits at once, component frameworks tailored
for real-time and embedded systems, ranging from the Component-Integrated
ACE ORB (CIAO) [2, 3] specialization of the CORBA Component Model
(CCM) [4] standard, to the Component Architecture for microkernel-based
Embedded Systems (CAmkES) [5] framework, extend traditional component
models to also consider attributes (e.g. priorities and execution times) and
constraints (e.g. deadlines) for timing and other para-functional properties.

In particular, CAmkES, which targets the seL4 microkernel [6], provides
a description language for the functional requirements of a component-based
embedded system, and for static assignment of para-functional attributes such
as priorities to component threads. Such static assignment, however, may
be problematic in systems where real-time task execution crosses component
boundaries. Under priority-driven scheduling, tasks are assigned priorities to
ensure their deadlines are met. Tasks and components may be orthogonal; a
task may be decomposed into execution across multiple components, and a
single component may execute on behalf of multiple tasks, but by assigning
priorities to components rather than to tasks, CAmkES does not fully support
priority-driven scheduling of multi-component tasks.

To address this limitation, in [7] we presented a new library to enable
priority-aware inter-component requests in CAmkES running atop seL4. The
library provides a concurrency framework that allows multiple concurrent tasks
to execute across shared components, while retaining end-to-end task prioriti-
zation.1 It supports (1) multiple concurrent requests to the same component
procedural interface endpoint; (2) priority propagation, which couples requests
with priority metadata and ensures that each component thread is priori-
tized according to the task for which it executes; and (3) implementations of

1Available from https://www.sudvarg.com/priority-aware-camkes

https://www.sudvarg.com/priority-aware-camkes
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Non-Preemptive Critical Sections, Immediate Priority Ceiling Protocol, and
Priority Inheritance Protocol, for components encapsulating exclusive access
to a shared resource. The concurrency framework includes new extensions to
the CAmkES specification language, allowing users to easily specify the desired
real-time behavior of a component. It is implemented entirely in userspace, so
it can take advantage of existing formally verified kernel mechanisms in seL4.

In this paper, we extend our prior work, introducing mechanisms to sup-
port nested lock acquisition via intercomponent requests. The mechanisms our
library provides are designed to be both fast and predictable in execution time.
Our protocols use priority semantics to guarantee consistency over lock acqui-
sition without additional atomic operations. We measure the overhead induced
by our protocols, and validate that it is appropriately bounded. We also pro-
vide an overview of how to do schedulability analysis for a component-based
task system specified with our extensions to CAmkES, taking into account
blocking times induced by both library overhead and shared resource access
under our supported protocols. New to this extension, we present (and prove
in Appendix A) a formulation of the hyperbolic bound for rate-monotonic
scheduling of tasks with blocking times, which allows tasks to be assigned
non-unique priorities. We also demonstrate, through empirical timing measure-
ments of task sets running on both Intel x86 and ARM hardware platforms,
that our implementation, coupled with this analysis, is successful in meeting
end-to-end deadlines for cross-component task execution in real-time systems.

The rest of this paper is organized as follows. Section 2 gives relevant back-
ground about the seL4 microkernel and the CAmkES framework, and provides
an overview of related work. Section 3 describes our target task model and
existing approaches for performing response-time and schedulability analy-
sis under this model. Section 4 details the design and implementation of our
library, and Section 5 provides a brief summary of its usability, integration
with CAmkES, and auxiliary tools. Section 6 presents (1) measurements on
two different hardware platforms of the overheads introduced by the protocols
supported by our library, (2) empirical evaluations on those same platforms (in
which no deadline misses were observed) of synthetic task sets with harmonic
periods using those protocols, and (3) schedulability analyses which incorpo-
rate our measurements of protocol overheads across a broader set of synthetic
task sets; all three of which demonstrate the suitability of our library for real-
time systems. Finally, Section 7 concludes the paper, and discusses directions
for future work.

2 Background and Related Work

CAmkES provides a description language for the functionality of a
component-based embedded system. It is designed to incur minimal execution
time and memory overhead. While addressing these para-functional require-
ments for overall system design, explicit real-time specifications for individual
tasks and components were not a part of the original model. CAmkES has since
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been extended atop seL4 [6], allowing for specification of components’ thread
priorities statically at compile time [8]. The seL4 microkernel is a widely used,
lightweight OS kernel [6, 9] with capability-based access control to broker all
user-level functionality, and its functional specification and implementation
have been formally verified [10, 11]. Additionally, all kernel pathway worst-
case execution times have been analyzed and bounded [12]. This makes seL4
well-suited for real-time systems, and it is a natural target for CAmkES, allow-
ing for separation between components, while providing efficient IPC channels
to handle the explicitly-defined connections between them. In this work, we
extend our contributions presented in [7], providing a framework that expands
CAmkES’ support for real-time task sets executing end-to-end across shared
components atop the seL4 kernel. We also show how real-time tasks can be
mapped to a component model and implemented in CAmkES and seL4 with-
out changes to seL4’s verified codebase or existing CAmkES software, thus
allowing easy adoption.

The Component-Integrated ACE ORB (CIAO) [2, 3] extends and special-
izes the CORBA Component Model [4] with component QoS specifications
provided as additional metadata, separate from functional specifications. In
both CAmkES and CIAO, RPC invocations are realized as synchronous IPC
between threads in separate components, though if components are specified
to exist within the same protection domain, both CAmkES and CIAO can
resolve RPCs between them into direct function calls.

The Patina API [13] provides priority-aware synchronization primitives
for shared resource access in seL4. It includes a mutex service that provides
an implementation of the Priority Inheritance Protocol; threads obtaining a
lock must invoke the service via an RPC. Similarly to our approach described
in Section 4.2, it enables priority-ordered locking, circumventing seL4’s native
FIFO wait-queue. It also keeps track of which thread holds the mutex so that it
can elevate its priority if a higher-priority thread requests the lock. In contrast,
however, our framework extends the existing CAmkES design to encapsulate
all execution over a shared resource in its own component. This allows access
to a shared resource to be defined at the component level, and each com-
ponent manages its own priority-based locking protocols with the common
framework. This avoids the need to interpose a separate mutex server com-
ponent. Additionally, Patina does not support nested locking; our framework
provides mechanisms to support nested locking over multiple priority-based
shared resource access protocols, including the Priority Inheritance Protocol.

The AUTOSAR specification [14, 15] also supports priority-based access
to shared resources, assigning a ceiling priority to each mutually-exclusive
shared resource, then elevating a task’s priority to that ceiling when it obtains
the resource, thus implementing the Immediate Priority Ceiling Protocol [16].
However, it does not specify native Priority Inheritance Protocol support, nor
does it offer native priority propagation with RPC calls, both of which are
features of our implementation.
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An alternative to inter-thread RPC is thread migration between protec-
tion domains, which some OS kernels enable by decoupling a thread’s execution
context (e.g. register values, stack, address space, etc.) from its scheduling con-
text (e.g. priority, resource accounting statistics, temporal reservations, etc.).
In the Mach 3.0 kernel, RPC is realized by having the requesting thread
immediately continue executing in the context of the server; a partial context
switch is needed to separate execution contexts, but the scheduling context
maintains continuity across the call [17]. A similar, efficient thread migration
mechanism was later realized for inter-component requests in the Compos-
ite component-based OS [18]. These approaches let end-to-end task execution
retain scheduling semantics across component boundaries, but do not directly
support priority protocols for shared resource access. A migrating schedul-
ing context must also acquire an execution context and related resources (e.g.
a stack) from the target component’s scope. It is argued [19] that access to
the allocated stacks in a component can induce priority inversion, unless each
component allocates a stack for each thread in the system. Because CAmkES
explicitly defines all intercomponent request paths, our framework is able to
allocate threads (and associated stacks) in a way that avoids such contention.

Capacity-reserve donation (Credo) [20], implemented in the original L4
microkernel [21], uses scheduling context migration to propagate priorities
with intercomponent requests, while also supporting shared resource access
protocols (in particular, the Priority Inheritance Protocol [22] and the Imme-
diate Priority Ceiling Protocol [23, 24]). A similar approach [25] was later
implemented to support the Priority Inheritance Protocol and bandwidth
inheritance [26] in the NOVA microhypervisor [27]. These approaches, unlike
ours, require the kernel to track the full migration path of the scheduling con-
text. In contrast, ours is a userspace framework that allows coordinated control
over the implemented protocols. Request messages are coupled with a prior-
ity parameter and a unique identifier for the originating task, allowing each
component to manage and track its incoming and outgoing requests. Runtime
traversal of request chains for nested priority inheritance is managed via mes-
sage passing among cooperative components. This allows RPC to be realized
as synchronous IPC using a thread model that enables immediate request-
passing where appropriate, while appropriately blocking on access to locked
resources.

3 System Model

3.1 Task and Component Model

In this work, we target an implicit-deadline, sporadic task system, using fixed-
priority, preemptive scheduling on a uniprocessor. Our system is composed of
a set Γ of n tasks {τi = (Ci, Ti, pi)} characterized by a worst-case execution
time Ci and a minimum interarrival time Ti, and assigned a priority pi. We
assume, for schedulability considerations, that task execution is nonblocking
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(except when waiting for a lock held by another task). In other words, jobs do
not self-suspend except on completion.

Our target OS platform is the seL4 microkernel [6], which supports
fixed-priority preemptive scheduling. The seL4 kernel, compiled with default
settings, schedules threads of the same priority in round-robin fashion; in this
work we instead consider a version in which the round-robin timeslice is set
large enough that threads will always run to completion unless preempted by
a strictly higher priority thread. In Sections 4 and 6 respectively, we describe
our implementation and evaluation of this version.

We define a mapping from our task system Γ to originating components
and sets of component procedure interfaces (CPIs), described in CAmkES, as
follows. First, for each task τi ∈ Γ, we define a component ci that we say orig-
inates the task. In CAmkES, that component is specified as active (using the
control directive), giving it an associated thread to run the task. The thread
is assigned (via a CAmkES attribute) the priority pi of the task. Common
functionality or resources, shared among multiple tasks, may be encapsulated
behind CPIs within other components.2 Each such task τi is thus decomposed
into multiple subtasks: an initial subtask executing in its originating compo-
nent ci, with control flow then passing out of it to zero or more shared CPIs,
then returning back through the request chain before finally completing exe-
cution in ci, as illustrated in Fig. 1. Requests can be nested: CPIs may send
requests to other shared CPIs. Further, a request chain may branch: a CPI or
the component originating a task may make subsequent requests to multiple
other CPIs, or even multiple requests to the same CPI, within the control flow
of a single job.

A
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D

1 τ1,1

2 τ2,1

3 τ3,1

A τ1,2

A τ2,2

C τ3,2

B τ1,3

B τ2,3

3 τ3,3
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A τ2,4
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Fig. 1: Tasks {τ1, τ2, τ3} originate in active components {1, 2, 3} respectively.
Components 1 and 2 share common functionality, realized through a request
to the same CPI in component A which itself sends a request to a CPI in B.
Component 3 sends a request to a CPI in C, then to one in D. This defines a
decomposition of each task into subtasks.

2Our system model does not allow an originating component to specify any CPIs since it is by
definition the root of all request chains emanating from it.
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Components hosting one or more shared CPIs are realized in CAmkES
by defining them as passive (lacking the control directive). Explicit con-
nections — from an originating component or CPI that uses it, to the CPI
— must be defined in CAmkES. Connections are backed by an underly-
ing endpoint, an seL4 kernel object that enables RPC calls between threads
through synchronous IPC, where the requesting thread blocks until it receives
a reply.3 Endpoints, being synchronous, require a sending and receiving thread
to rendezvous. Thus, task execution will be blocked at the transition between
subtasks if no threads in the target CPI are waiting on the endpoint.

CAmkES components, using the built-in connector types, establish CPIs
as endpoints with a single listening thread that handles all requests; its pri-
ority is specified as an attribute of the CAmkES configuration. This presents
fundamental incompatibilities with our task model: multiple tasks executing
end-to-end across shared CPIs are not guaranteed to execute subtasks accord-
ing to the priority of the task, and may be blocked from progress if a procedure
on its request path is already executing, even if that execution is for a request
from a task of lower priority. The framework we provide addresses these prob-
lems, providing appropriate priority propagation across CPIs that encapsulate
shared functionality and mechanisms for additional resource access protocols
for CPIs encapsulating exclusive access to shared resources.

3.2 Resource Access Protocols and Schedulability

To analyze schedulability of our end-to-end task model, we consider several
possibilities under the system model we have described. For each of them,
we describe how the existing theory for rate-monotonic scheduling, includ-
ing blocking time analysis for shared resource access protocols, applies to our
model.

3.2.1 Priority Propagation

In Section 4.3 we describe our framework’s mechanisms to support prior-
ity propagation — whereby threads belonging to CPIs encapsulating shared
functionality execute at the priority of the requesting task, and can preempt
execution to handle requests of higher priority — allowing the component
execution model to match our priority-based task model presented above.
However, overhead induced by the protocol introduces a brief blocking time
during the transition, as if the task holds a lock according to the Immedi-
ate Priority Ceiling Protocol (IPCP). Under IPCP, a task may be blocked,
at most, for the duration of a single critical section [23]. This allows us to
compute blocking times, and hence perform schedulability analysis, for a task
system (mapped to originating components and CPIs as we describe next)
using priority propagation.

3Another version of this is also possible, where a request is sent asynchronously to an event
interface, in which case no reply is necessary, and control need not return to the requesting active
component or CPI. We defer consideration of this alternative to future work.
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We say that task τi originates in active component ci and additionally
executes across a set of CPIs (hosted by passive components) ĉi (of size ∥ĉi∥).
The worst-case overhead for sending a request with a propagated priority to a
CPI is denoted Cprop send, and for replying is Cprop reply, with worst case total
overhead Cprop = Cprop send + Cprop reply (measured in Section 6). For a CPI
c, we denote the worst-case procedure execution time as C(c). Thus, a task τi
has total WCET:

Ci = C(ci) +
∑
c∈ĉi

C(c) + ∥ĉi∥ · Cprop (1)

Each CPI c has a minimum priority pmin(c) among tasks for which it exe-
cutes, and a maximum priority pmax(c). The blocking time Bi induced on a
task τi is therefore max(Cprop send, Cprop reply) if there exists a CPI c for which
pmin(c) < pi and pi ≤ pmax(c); otherwise, the CPI experiences no blocking
time. Schedulability analysis of task sets where each task has a unique priority
then can be performed using the Hyperbolic Bound with blocking factors [28]:

∀τi ∈ Γ
∏

τj :pj>pi

(
Cj

Tj
+ 1

)(
Ci +Bi

Ti
+ 1

)
≤ 2 (2)

A more pessimistic bound, though one that applies to a task system Γ
(|Γ| = n) where multiple tasks may have the same priority, is presented in [22]
(Corollary 17), as a generalization of the rate-monotonic utilization bound
in [29]: ∑

τi

Ci

Ti
+max

τi

{
Bi

Ti

}
≤ n

(
21/n − 1

)
(3)

In theory, for RM schedulability analysis of task sets where some tasks have
equal periods, these tasks can be assigned unique priorities in some arbitrary
order. In practice, however, tasks of equal periods are often assigned equal
priorities. Systems are typically limited to a fixed number of priority levels
(one version of our implementation is limited to 128 priorities, as described in
Section 4.2); the pigeon-hole principle dictates that for large enough task sets,
some tasks cannot have unique priorities. Further, assigning unique priorities
to tasks of equal periods involves a decision about the ordering which may have
undesirable implications (e.g., a task might be preempted by another task with
the same period, resulting in an undesirable increase in context switching). To
address these issues, we provide the following schedulability condition (which
we prove in Appendix A) for task sets with non-unique priorities and blocking
times:

∀τi ∈ Γ
∏

τj :pj≥pi,j ̸=i

(
Cj

Tj
+ 1

)(
Ci +Bi

Ti
+ 1

)
≤ 2 (4)
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3.2.2 Immediate Priority Ceiling Protocol

Our framework allows a CPI to encapsulate execution of a critical section with
the Immediate Priority Ceiling Protocol (IPCP). Such CPIs have a worst-case
request overhead time Cfix = Cfix send + Cfix reply. We introduce a new term,
B(c), for the worst-case blocking time that a CPI c can induce. For a CPI c to
which priorities are propagated, B(c) = max(Cprop send, Cprop reply) as before.
For a CPI c having a fixed priority, e.g. one using IPCP, blocking time must be
computed recursively as the sum of its execution time and protocol overhead
(Cfix +C(c)), plus the execution times and protocol overheads for all CPIs to
which it makes requests. Now, the blocking time Bi induced on task τi is the
maximum worst-case blocking time induced by any CPI:

Bi = max
c

{B(c) | pmin(c) < pi ≤ pmax(c)} (5)

IPCP is an improved version of Non-Preemptive Critical Sections (NPCS),
which assigns the maximum system priority to execution in all critical sections.
Under NPCS, then, the blocking time induced by any CPI becomes:

Bi = max
c

{B(c) | pmin(c) < pi} (6)

Task WCETs must account for the different overheads, Cp and Cf , induced
by requests to CPIs that propagate priorities and have fixed priorities, respec-
tively. We say that a task τi executes across a set of fixed-priority CPIs ĉi,f
and a set of CPIs that propagate priority ĉi,p. This results in a new equation
for task WCET, slightly modified from Eqn. 1:

Ci = C(ci) +
∑
c∈ĉi

C(c) + ∥ĉi,p∥ · Cprop + ∥ĉi,f∥ · Cfix (7)

Schedulability analysis, using Eqns. 3 or 4, can be performed using these
new blocking times and WCETs.

3.2.3 Priority Inheritance Protocol

Our framework also supports CPIs that use the Priority Inheritance Protocol
(PIP), as described in Section 4.2. As we show in Section 6.1, our mecha-
nism induces protocol overhead that depends on whether the lock is already
acquired, and if so, on the number of tasks that execute on the CPI. For such
a CPI c, we denote this Ci(c).

Because a task can be blocked for the duration of multiple critical sections
under PIP, CPIs implementing PIP may induce longer worst-case blocking
times than those using IPCP [22]. However, under PIP, higher-priority tasks
may preempt lock-holders in situations where this preemption could not hap-
pen under IPCP, which may make PIP attractive, especially for some soft
real-time applications.
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In [7], which this paper extends, our implementation restricted the nesting
of CPIs such that a CPI implementing PIP could only send requests to CPIs
with a fixed priority ceiling, i.e., IPCP or NPCS. In this paper, we extend
the mechanisms to allow for nested priority inheritance: if a thread in a CPI
implementing PIP is blocked on a nested request, and it inherits a higher pri-
ority from a new request to its CPI, it will propagate the inherited priority to
the CPI handling the nested request. As described in Section 4.2, this propa-
gation requires a sequence of updates across the request chain. Each update
induces an overhead of Cup, for a total of l(c)·Cup, where l(c) is the length of
the longest request chain rooted at CPI c. Thus, the worst-case overhead Ci(c)
can be computed as:

Ci(c) = max
{
Cunlocked

i , C locked
i + C locked

i (c) + l(c)·Cup

}
(8)

Here, Cunlocked
i denotes the overhead of the protocol when the lock is avail-

able, C locked
i denotes the overhead when the lock is acquired and no additional

tasks are waiting on the lock, and C locked
i (c) denotes the additional worst-case

overhead induced by the CPI’s Notification Manager priority queue (described
in Section 4.2) when full.

4 Design and Implementation

The CAmkES framework [8] provides a specification language to describe a
system as a collection of components and connections between them. CAmkES
generates the necessary seL4 system calls to create components and IPC
described by a user-provided system specification and component source code,
then compiles everything into an Executable and Linkable Format (ELF)
binary packaged with an seL4 kernel image.

Our goal in this work, as in our prior work [7] that it extends, is to elabo-
rate on the CAmkES framework without changes to its underlying parser or
to the seL4 kernel. The design and implementation of our approach provides
priority propagation across thread-safe, reentrant components executing
similarly to sequential, non-componentized versions. We also support sev-
eral priority-based locking protocols — including the Immediate Priority
Ceiling Protocol (IPCP), Non-Preemptive Critical Sections (NPCS),
and Priority Inheritance Protocol (PIP) — to provide synchronization
over component-encapsulated shared state. Component execution is replicated
across subtasks and control flows, with multiple subtasks in a single com-
ponent, so that functionality itself need not be replicated. Each component
provides spatial isolation via its own separate address space, which is shared
among its threads’ unique stacks.

4.1 Shared Resource Access Protocols

CPIs that encapsulate exclusive access to a shared resource must provide
appropriate priority semantics for the associated critical section. We assume
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that each such CPI encapsulates a complete critical section. Encapsulation of
a shared resource for which only a portion of execution must be locked can
be realized with one or more CPIs propagating priority for reentrant access to
the resource, and other CPIs encapsulating locking semantics for nonreentrant,
exclusive access.

Nested locking (acquiring a second lock while already holding a lock) then
can be achieved through a chain of requests: a CPI encapsulating one lock
can make a request to another CPI encapsulating the second lock. This is
illustrated in Fig. 2.
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Fig. 2: Active components 1 and 2 send requests to a CPI for Reentrant Exe-
cution that is provided by a passive Resource Component, which also provides
and uses CPIs for exclusive execution protected by Lock A, and nested locking
by Lock B. Lock acquisition ordering is enforced by the defined connections;
an acyclic connection digraph is deadlock free.

It is straightforward to implement the Non-Preemptive Critical Sections
Protocol (NPCS) and the Immediate Priority Ceiling Protocol (IPCP). Both
are achieved in our framework by tagging an interface with the “fixed” priority
protocol attribute (as described in Section 5) and providing a single listening
thread to its endpoint, assigning the thread a fixed priority. This wraps the
free implementation of these protocols that is provided by both the MCS
and non-MCS builds of the seL4 kernel [30].4 Under either protocol, if the
CPI’s procedure performs a nested request to another downstream CPI, the
priority of the thread, not the originating task, must be passed with the request
message. This was omitted from our prior work in [7], and has been added in
this extension.

The NPCS is realized under traditional, fixed-priority, preemptive schedul-
ing by assigning a CPI the maximum system priority (255 in seL4). Once a
request is received by the interface, it cannot be preempted. Under round-robin

4We did not enable MCS features when building the kernel. Budget depletion during execution
in a CPI encapsulating nonreentrant critical sections can starve higher-priority requests, as noted
in [13]. Further, the seL4 sporadic server implementation induces budget fragmentation even when
threads are preempted by others of higher priority [30]; the standard sporadic server should only
schedule a replenishment when a thread voluntarily yields the processor [31, 32].
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scheduling of threads having equal priorities, NPCS comes with the addi-
tional constraint that all tasks (and their originating components’ threads) are
restricted to priorities less than the maximum (i.e. 0-254 in seL4). This guar-
antees that execution in a critical section is not preempted by a new request,
which implies that two critical sections cannot execute concurrently: one crit-
ical section would necessarily have to begin execution before the other, and
for the second critical section to execute, it would have to be in response to
a request preempting the first. Otherwise, if another task has priority 255,
round-robin scheduling could allow preemption of the non-preemptive section.

Because NPCS induces blocking time on all tasks in a system, the IPCP is
typically preferred as an alternative fixed-priority resource access protocol. As
noted in [30], IPCP is straightforward to implement by providing an endpoint
with a single thread, assigned a priority equal to the priority ceiling of the
CPI. With only a single thread listening on the endpoint, no additional lock
variable is necessary. IPCP is, as defined in [23], a deadlock avoidant protocol.
However, under seL4’s priority-based round-robin scheduler, deadlocks can
occur. Consider a task, τ1, that acquires some lock A, then lock B while still
holding A (lock acquisition is nested). Another task, τ2, acquires lock B, then
lock A. If τ1 and τ2 have priorities equal to the priority ceiling and τ1 acquires
A, it may be switched out for τ2, which could then acquire B and proceed to
wait on lock A. At this point, τ1 is switched back in, and attempts to obtain
lock B, causing deadlock.

One solution to this is to assign “fixed” CPIs a priority equal to PC+1.
However, under our component model, deadlock could still occur, even without
round-robin scheduling. The possibility of deadlock requires execution paths
that acquire locks in opposite orders. This would imply two CPIs, each encap-
sulating a lock, that each have connections to the other’s interface. Given
misconfigured CPIs, one might request the other, which could request the first
in turn, causing deadlock within a single task’s control flow. To guarantee the
absence of deadlock one would have to ensure that no cycles exist in the digraph
of connections. New to this extension, we provide a tool to parse and detect
cycles in a provided system specification, which alerts to possible deadlock.

We do not implement the original Priority Ceiling Protocol, as described
in [22]. The Immediate Priority Ceiling Protocol assigns static priorities to
component interfaces according to the priority ceiling of the corresponding
lock. Because connections are defined statically in the CAmkES specification,
the priority ceiling can be computed offline using our parser. However, the
original Priority Ceiling Protocol requires the tracking of a priority ceiling
among all currently acquired locks; because this introduces additional online
global state even among non-interacting components, we do not provide this
protocol as an option.

4.2 Priority Inheritance Protocol

An interface will provide locking with Priority Inheritance Protocol semantics
if tagged with the “inherited” priority protocol attribute. For these interfaces,
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our framework supplies the CPI with five variables: a boolean lock variable
(which, as we will explain, need not be accessed using atomic operations), a
pointer to the thread holding the lock (implemented as an seL4 CPtr to its
Thread Control Block), the current inherited priority of that thread, a unique
identifier corresponding to the task for which the component is currently
executing, and a function pointer that facilitates nested priority inheritance.

To allow for priority inheritance, these CPIs must (1) execute a request
at the priority of the requesting thread, and (2) handle concurrent requests,
allowing temporary preemption to enable the lock holder to inherit any higher
priorities associated with these requests. To achieve these goals, we give each
CPI a pool of threads, all waiting for requests on the underlying endpoint.
To ensure thread availability whenever a request arrives, the size of the pool
is set equal to the number of possible concurrent requests, as illustrated in
Fig. 3. Because CAmkES provides a static specification of CPIs and request
connections, this value is straightforward to determine.
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Fig. 3: Passive component A’s CPI is used by active components 1 and 2 so
a pool of 2 threads waits on the underlying endpoint. Passive component B’s
CPI is used by both of component A’s CPI threads and by active component
3, so it has 3 threads for 3 tasks.

The threads belong to the same CPI and share an address space, so they
all have access to the CPI-scoped variables used by the protocol mechanisms.
Threads wait on the endpoint at the highest priority among all tasks that use
the interface, referred to as its priority ceiling (PC). This ensures that if a
request preempts existing execution in the CPI on behalf of another request
through the interface, the thread handling the new request will be of sufficiently
high priority to begin execution.

Our implementation of Priority Inheritance Protocol is illustrated in Fig. 4.
When a request arrives, the responding thread 1○ checks the lock. If the lock
is already held (State Locked), it proceeds to 2○ check the inherited prior-
ity variable against the priority of the requesting thread, which is passed to
it over the endpoint as part of the request message.5 If the request priority is
higher, it is inherited by the thread currently holding the lock: the respond-
ing thread 3○ updates the inherited priority variable, then 4○ elevates the
priority of the locking thread’s Thread Control Block (TCB) with a call to

5In CAmkES, procedure interfaces are declared similarly to C-style functions: they may include
one or more parameters, which specify the set of arguments that must be passed as part of the
IPC message data.
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seL4 TCB SetPriority. If the locking thread is currently blocked on a down-
stream request, a corresponding pointer 5○ will have been set to a function that
facilitates propagating the inherited priority to the requested CPI (described
below); the responding thread calls this function. At this point, it 6○ waits for
a signal indicating that the lock has been freed.

CPI-Scoped Variables
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pop self

provides nest(int prio, int request);
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Fig. 4: Implementation of Priority Inheritance Protocol

If, however, the lock is unlocked (State Unlocked), the thread 9○ marks
the lock as locked, 10○ sets the inherited priority variable to the request priority,
11○ sets the TCB pointer to itself, and 12○ registers the unique identifier of the
originating task (passed as part of the request message). It then 13○ demotes
its priority to the request priority and 14○ runs the interface’s procedure code
to handle the request. Once complete (State Finished), it 21○ promotes itself
back to the priority ceiling, 22○ marks the lock as unlocked, 23○ signals any
threads waiting for the lock, then finally 24○ replies to the requestor and returns
to waiting on the endpoint.

The seL4 kernel provides notification objects, which are simple signaling
mechanisms that support blocked waiting. When a notification object receives
a signal, a single waiting thread (if there are any) is awakened. If the seL4 kernel
is compiled with default settings, it wakes waiting threads in FIFO order.
Notification objects are priority aware when compiled with MCS settings; in
this case, waiting threads are tracked in a priority-ordered linked list [33]. In
either case, it is unsuitable to provide a single notification object upon which
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all threads requesting a held lock must wait. Threads wait at the priority
ceiling of the interface, but the thread handling the request with the highest
priority must be guaranteed to be the first to obtain the lock when it becomes
available. As such, we implement a request-priority-aware signaling mechanism
that we call a notification manager.

The notification manager contains a priority queue (implemented as a max-
heap) of notification objects, sorted by priority. Because a max-heap does not
maintain a stable sort, we additionally track the insertion order of all objects
into the priority queue;6 two objects of equal priority are sorted so that the
first object inserted is higher in the heap’s ordering. When initialized, the noti-
fication manager creates an array of notification objects, equal to the size of
the thread pool, by using the CAmkES seL4 object allocator. The notification
manager reveals two public functions, wait and signal, similar to the seL4 sys-
tem calls of the same names for notification objects. A pointer to the request
priority and the unique identifier of the task originating the request are passed
with the wait call, allowing the notification manager to retrieve a notification
object from the free list, then insert it into the heap. The wait function then
uses a system call to wait on that notification object. The notification man-
ager’s signal function signals the notification object at the head of the heap
(State Wake). The awakened thread 7○ returns from the seL4 wait system
call; its control flow remains in the notification manager’s wait function, which
8○ pops its notification object from the head of the priority queue. At this
point, the thread 9○ proceeds as if it had found the lock available.

If a nested request to a downstream CPI is performed as part of the inter-
face’s procedure code (State Request), our implementation of the protocol
wraps the request so that the thread 15○ elevates its priority to the PC, 16○
sets the request priority to the current inherited priority, 17○ sets the function
pointer to facilitate downstream nested inheritance, then 18○ sends the request.
On receiving a reply, it 19○ clears the function pointer, then 20○ demotes its
priority back to its current inherited priority. This avoids possible data races
associated with a higher priority request arriving when the pointer is in an
inconsistent state (i.e., when the lock-holder has set the pointer but hasn’t yet
made the request, or when the lock-holder has received a reply but hasn’t yet
cleared the pointer).

To enable nested priority inheritance, any CPI in a nested request chain
downstream of a CPI implementing PIP (except those with a fixed prior-
ity ceiling, i.e., IPCP or NPCS) provides an additional method, nest, to
receive inherited priority updates from upstream components. When sending
a request to the CPI, an upstream component 17○ sets a function pointer to the
corresponding nest method; this allows new incoming requests with higher
priorities to 5○ perform nested propagation of the inherited priority, passing
the new priority and the identifier of the thread waiting on the request to the
downstream CPI. In a CPI implementing PIP, the nest method 25○ checks

6The insert order increments with every insertion into the priority queue. It is is implemented
as a 64-bit unsigned integer to avoid overflow.
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if the corresponding requestor currently holds the lock. If not, it finds the
requestor’s node in the notification manager, elevates its priority, then recur-
sively swaps the node with its parents until the max-heap property is satisfied.
The method then performs steps 2○– 5○ as necessary to elevate the priority
of the lock holder and propagate the inherited priority to further downstream
requests. Note that CPIs providing the nest method require an additional
thread.

In the absence of round-robin scheduling of threads at the same priority,
all execution of our protocol (steps 1○–13○, 16○–20○, and 22○–25○ in Fig. 4) occurs
at the priority ceiling, and so cannot be preempted by new requests. The
only time that execution can be preempted by a request is when the thread
is executing the CPI procedure (steps 14○–15○ and 21○). If preempted here, it
will remain preempted while the responding thread executes steps 1○– 5○ for
the primary method or steps 25○ and 2○– 5○ for the nest method. Thus, there
can only be two threads from the pool active at any given time: either when
there is one thread executing (steps 14○–15○ or 21○) and one at the priority
ceiling (steps 1○– 5○ or 25○), or when the thread holding the lock signals the
notification manager, waking another thread. In the latter case, the signaled
thread will proceed through steps 7○– 9○, while the signaling thread proceeds
to 24○. As both threads are executing at the priority ceiling, no new requests
can arrive, and so the thread just awakened will be guaranteed that when it
pops the head of the heap, it will have its own notification object, and that
the lock will not be acquired by another thread before it proceeds to set the
lock. Thus, by priority semantics, our protocol is race-free.

However, under round-robin scheduling of same-priority threads, a race
may occur: a responding thread running the mechanisms of our protocol can be
swapped out for a requestor at the priority ceiling, which would wake another
thread from the pool. In our prior work, we addressed this problem in the
absence of nested locking [7], but these same arguments do not apply to our
implementation of nested Priority Inheritance Protocol. We therefore imple-
ment and evaluate our protocols in the context of traditional fixed-priority
preemptive scheduling, and defer consideration of round-robin scheduling to
future work.

4.3 Priority Propagation

We also support CPIs that encapsulate reentrant functionality shared among
multiple tasks. So that end-to-end task execution follows the semantics of
fixed-priority, preemptive scheduling as described in Section 3, we require that
task priority propagates with control flow across request paths. Such a CPI,
having an interface tagged with the “propagated” priority protocol attribute,
must (1) execute requests at the priority of the requesting thread, and (2)
handle concurrent requests in a preemptive fashion, i.e. a CPI may preempt
its own procedure’s execution if it receives a request from a higher priority
task. Similarly to PIP, these CPIs are again supplied with a pool of threads,
the size of which is equal to the number of possible concurrent requests. Under
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traditional fixed-priority preemptive scheduling, these threads are set to wait
on the endpoint at the priority ceiling.
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Fig. 5: Implementation of Priority Propagation

Our implementation of Priority Propagation is illustrated in Fig. 5. When
a request arrives, the thread handling the request 1○ retrieves a node from a
Thread Manager, a data structure that allows the CPI to track requests and
associated priorities. The Thread Manager maintains two singly-linked lists to
track free and in-use nodes. After retrieving a free node (State Executing)
and adding it to the in-use list, the thread 2○ sets the node’s priority to the
request priority, 3○ sets the node’s TCB pointer to itself, and 4○ registers the
unique identifier of the originating task (passed as part of the request message).
It 5○ sets its priority to that of the requesting thread, per the priority informa-
tion that is passed to it over the endpoint as part of the request message, and
then 6○ executes its procedure, running the subtask at the originating task’s
priority. On completion (State Finished), it 13○ elevates its priority back to
its original waiting priority, 14○ clears the TCB of its corresponding Thread
Manager node and returns it to the free list, then 15○ replies to the requestor
and returns to waiting on the endpoint. By receiving a request and sending
the reply at the priority ceiling of the interface, these transitions between sub-
tasks are equivalent to critical sections with IPCP semantics (under traditional
fixed-priority preemptive scheduling) and induce equivalent blocking time as
was discussed in Section 3.2.1.
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If a CPI implementing Priority Propagation handles nested requests that
originate from a CPI implementing PIP, it must also provide a nest method.
Similarly to a PIP CPI, an additional thread must be provided to its pool.
The method 16○ finds the node in the Thread Manager executing on behalf
of the corresponding requestor, 17○ elevates its priority, then 18○ if the thread
is blocked on a further downstream request, it calls that CPI’s nest func-
tion. Similarly to the PIP implementation, when sending a request (State
Request), a thread must 7○ elevate its priority to the PC, 8○ set its Thread
Manager node to the current inherited priority, 9○ set the function pointer to
facilitate downstream nested inheritance, then 10○ send the request. On receiv-
ing a reply, it 11○ clears the function pointer, then 12○ demotes its priority back
to its current inherited priority.

5 Implementation and Usability Enhancements

Our userspace implementation targets closed embedded real-time systems
based on a non-MCS build of the seL4 kernel, running atop unicore or
fully-partitioned multicore hardware. We defer exploration of kernel-enforced
properties in open systems with untrusted components, or using MCS kernel
features, to future work.

We implemented our framework with the goal of staying as true to the
CAmkES language and design philosophy as possible. Our implementation
leverages existing techniques used by the CAmkES framework, including the
Jinja template engine, to provide support for several protocols using only 659
lines of code, as summarized in Table 1. It minimizes, as much as possible,
the extent of changes necessary for existing CAmkES application systems to
incorporate its functionality. We now (1) describe how we met this goal, and
(2) provide an overview of how a developer would use our framework.

Implementation Lines of Code
Base Framework C Code 102
Priority Inheritance Protocol C Code 118
Notification Manager C Code 139
Priority Propagation C Code 126
C Macros 16
CAmkES Macros 9
CAmkES Connector Declarations 100
CAmkES Connector Jinja Templates 49
Total 659

Table 1: Implementation Lines of Code

CAmkES allows components to be declared with a set of attributes, to
which values can be assigned. These attributes are compiled into symbols
in the component binary, and the user-provided source code for the compo-
nent can use them as variables. CAmkES additionally provides several built-in
attributes. For example, if a component provides a procedure interface named
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“iface”, CAmkES automatically defines an attribute iface priority, the
value of which defines the priority of any thread that handles requests on the
underlying endpoint. An active component has an automatic attribute simply
called priority that sets the priority of its execution thread. A user can add
either of these to a component’s declared set of attributes to make the pri-
ority available as a variable in the source code. This is necessary for priority
introspection without modification to underlying CAmkES or seL4 code (and,
therefore, for priority to be passed with a request message) because seL4 does
not provide a system call for threads to read their current priority level.

We provide three additional attributes. For components originating a task,
requestor provides a unique identifier to track the task’s control flow across
components, as described in Section 4. Each CPI under our framework must
be assigned the attributes num threads (which defines the number of threads
in the pool waiting on the endpoint) and priority protocol (which can be
one of “propagated,” “inherited,” or “fixed”). These attribute names must be
prefixed with the name of their associated interface, similarly to priority.

Because CAmkES supports C preprocessor commands, we provide a function
macro for ease of use, that automatically generates the attributes for each pro-
vided task and interface. Since each task’s identifier has no semantic meaning,
beyond being a unique integer identifier, the COUNTER symbol can be used
to easily assign a value.

CAmkES provides a library of standard connectors to component inter-
faces. Among these is the seL4RPCCall, which establishes a connection for
RPC invocations as synchronous IPC to a CPI. CAmkES uses Jinja tem-
plates [34] to generate much of the underlying code, including seL4 system
calls, to broker communication over a given connector type. We define a
new class of connectors, seL4RPCCallPrioritized, that inherits much of its
functionality from the seL4RPCCall’s templates.

In CAmkES, a particular connector type must specify the number of
threads bound to the underlying endpoint of the target CPI. Because our
interfaces may require different numbers of threads, depending on the number
of possible requestors, we cannot limit ourselves to a single connector type.
To avoid changing the underlying CAmkES parser to support providing this
as an attribute to the connector, we provide a CAmkES connector definition
file with 100 declared seL4RPCCallPrioritized connector types, supporting
threadpools from size 1 to 100. We additionally provide a function macro that
creates a connection with the appropriate connector type, when provided the
number of threads. Because the number of threads must be provided twice (to
the num threads attribute and to the connector macro), we support defining
this as an object macro. We use appropriate stringification such that it can
be passed to the function macro. For example, to establish a connection from
a client to a server interface, “iface,” that uses 2 threads, a user would write
the following in the CAmkES language:
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#define server_iface_num_threads 2
...
connection rpc(server_iface_num_threads)

conn(from client.iface , to server.iface);
...
server.iface_num_threads = server_iface_num_threads;

Our template code additionally inserts hooks into the appropriate functions
in our library: initialization, and function calls before and after the inter-
face procedure runs. This ensures that users of our framework do not have to
remember to manually insert the necessary hooks into the provided compo-
nent source code. For initialization, we leverage the existing init function
that CAmkES declares for each procedure interface. Normally, a user would
provide an appropriate function definition; our template defines it instead,
ensuring that it is called at component initialization. To allow additional user-
defined initialization, we provide an init function declaration (note the single,
rather than double, underscore) that is called at the end of our template’s
initialization.

Both priority and the task identifier must be passed as function arguments
for an RPC call to a CPI implementing our protocols, which is realized by
requiring that the procedure’s C-style function declaration includes both as
the last input parameters. This means that (1) the user-supplied source code
for the requesting component procedure must include these as function argu-
ments when a procedure is called, and (2) the user-supplied source code for
the handling component must have a function definition with these as the
last parameter. Instead of passing it directly through the functional inter-
face, these parafunctional properties could be passed alongside the functional
attributes/parameters in the request message, leveraging the CAmkES model
and encoding for passing parameters between components. However, we defer
that refinement to future work. Both approaches, while different in the require-
ments they impose on the user of the framework, would be equivalent when
compiled down to seL4 binaries.

To enable the nest function, a user of our framework must add the method
to the procedure associated with each CPI that must provide it. This is done
simply by adding the following line to the CAmkES procedure declaration:

void nest(in int priority , in int requestor);

The procedure must also be defined for any component using the procedure.
We provide a C function macro to simplify this: for a component that provides
a procedure interface named “iface”, invoke the macro with NEST(iface).
To perform nested requests, i.e., to achieve the functionality of steps (16-
21) in Fig. 4 and (8-13) in Fig. 5, we provide another C function macro.
Because the CAmkES parser describes connections from components to CPIs,
and a component may have multiple CPIs from which a downstream request
can originate, we were not able to wrap the functionality entirely in Jinja
templates. Nonetheless, the macro is intended to be easy to use in place of the
default C-style function calls for invoking requests. Its signature is as follows:



Springer Nature 2021 LATEX template

21

REQUEST(interface_from ,interface_to ,method ,...)

Here, interface from is the name of the CPI sending the request,
interface to is the recipient CPI, and method is the name of the recipient
procedure’s method being invoked. As a variadic function macro, additional
parameters required by the method can also be passed. The macro will also
return any value returned by the invoked method. The integration of the
macro’s functionality with our additions to the CAmkES connector templates
constrain connections to only being declared with a single “to” end; existing
connections declared with multiple “to” ends must therefore be broken up into
separate connections. Our templates check for this, and will fail to compile
(with appropriate error messages) if this requirement is not met.

Thus the framework, in its current form, relies on the user to make a few
changes to their component source code, and not just to the component-level
and application-level CAmkES specification. However, these changes are min-
imal and largely necessary to avoid modifying the underlying CAmkES parser
and seL4 kernel. Additionally, our framework contains appropriate checks, such
that if attributes are incorrectly specified, or parameters and method defini-
tions are not provided, the application system will fail to compile. Together,
its ease of use and its compilation checks to avoid misconfiguration make our
framework a good option for developing closed real-time systems.

We additionally provide a parser to help an application designer determine
the priority ceiling and number of threads to assign each CPI that uses our
protocol and to detect possible cycles. It recursively traverses the connection
graph defined by a CAmkES system specification file, determining the max-
imum task priority among possible requestors to each CPI. It additionally
counts the number of possible concurrent requests, for each CPI enumerating
the tasks for which it may execute. It identifies CPIs using the “fixed” priority
protocol, assigning them only a single thread. It also identifies CPIs using the
“inherited” protocol, and remains aware of the fact that a CPI encapsulating
a locking protocol cannot send multiple concurrent nested requests to down-
stream CPIs. Finally, it assigns an additional thread to each non-“fixed” CPI
downstream of a PIP interface to guarantee availability for the nest method.

It is worth noting that because CAmkES describes connections from com-
ponents to CPIs, the CAmkES specification by itself lacks the information
needed to determine the transitive closure of a request chain, as a component
with multiple CPIs might make nested requests as part of the procedure of
only one of those; this would not be evident from the digraph. This means,
without changes to the CAmkES parser, that (1) the presence of a cycle does
not necessarily imply a call chain loop with deadlock potential,7 and (2) that
a component on the “from” side of a connection that has multiple CPIs does
not necessarily send requests from both CPIs, meaning that priority or thread

7For example, two components might each have two CPIs, one which sends a request to the
other component, and one which receives a request from the other component. Despite the digraph
of requests forming a cycle between the two components, each request path involves a distinct set
of CPIs, and therefore cannot deadlock.
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counts might be overestimated. Our parser recognizes these cases, and warns
the user of the potential issue when it arises.

6 Evaluation

We evaluated our library using the CAmkES 3.10.0 framework, targeting
version 12.1.0 of the seL4 kernel, testing synthetic task sets on both Intel x86-
64 and ARMv8 AARCH32 ISA hardware platforms. We compiled using the
RELEASE=TRUE and SIMULATION=FALSE directives and enabled kernel printing.
For the Intel platform, we used a system with two Intel Xeon Gold 6130 Sky-
lake processors running at 2.1 GHz, and with 32GB of memory. We disabled
HyperThreading, SpeedStep, and TurboBoost. For the ARM platform, we used
a Raspberry Pi 3 Model B+, which has a 64-bit ARMv8 Cortex-A53 Broadcom
BCM2837B0 SoC with 1GB of RAM. We disabled the L2 cache, and clocked
its four cores to 700 MHz.8 Despite the hardware supporting the AARCH64
instruction set, seL4 currently only supports 32-bit mode on the Raspberry
Pi, so we compiled using the AARCH32=TRUE directive.9 On the Raspberry Pi,
we additionally enabled userspace access to the ARM Performance Monitor
Unit (PMU) to allow our system to measure and print elapsed cycles. We ran
each task set according to traditional, fixed-priority preemptive semantics (i.e.
a thread is not preempted or switched out for another thread of equal prior-
ity unless it yields the processor). This was realized by configuring the seL4
kernel with the round-robin timeslice set to a sufficiently large value.10

6.1 Protocol Overheads

We begin by measuring the overheads induced by our protocol. To support
fine-grained microbenchmarking, we measure elapsed cycles (using rdtsc on
Intel, and reading directly from the cycle count register on the ARM PMU)
for all measurements. Because reading from the cycle counter incurs its own
overhead, we first benchmark these reads by measuring the elapsed cycles
between two successive cycle counts. Results are summarized in Table 2.

Dividing the maximum cycles measured between two back-to-back cycle
counter reads, the clock speed of each platform gives a bound on the temporal
resolution of our measurements of a little under 14 nsec on the Intel Xeon, and
12 nsec on the Raspberry Pi. We individually measure the overheads for both
sending requests over an endpoint (Call) and replying to the request (Reply),
separately measuring the overheads of our PIP implementation for requests to
a CPI with an already-acquired lock (locked) versus those with an available
lock (unlocked). We additionally measure the overheads of nested requests

8The processor supports a CPU clock speed of 1.4 GHz. However, as noted in [35], this
frequency cannot be sustained continuously, and may lead to throttling and instability. To main-
tain predictability, we boot the Raspberry Pi with a constant 700 MHz CPU clock speed, set
the GPU processor core to 250 MHz, and disable throttling. Details can be found at https:
//www.raspberrypi.com/documentation/computers/config txt.html

9https://docs.sel4.systems/Hardware/Rpi3.html
10We set the CONFIG TIMER TICK MS kernel configuration parameter to 1,000,000 (1000 seconds),

sufficiently long to ensure appropriate behavior in our tests.

https://www.raspberrypi.com/documentation/computers/config_txt.html
https://www.raspberrypi.com/documentation/computers/config_txt.html
https://docs.sel4.systems/Hardware/Rpi3.html
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Intel Xeon Gold 6130 Raspberry Pi 3 Model B+
min max mean std min max mean std

Read cycle counter 22 28 25 1.3 8 8 8 0
Call, built-in 2478 4568 2528 211 563 3359 619 278
Reply, built-in 2494 2836 2519 34 416 1298 449 86
Call, fixed 3178 4810 3306 189 834 2591 1010 179
Reply, fixed 2590 3342 2659 142 422 954 466 94
Call, propagated 4348 6830 4574 287 2085 5516 2368 351
Reply, propagated 3536 3960 3567 41 1606 2335 1694 76
Call, inherited, unlocked 4344 6834 4625 288 1935 5381 2226 335
Call, inherited, locked 4372 6282 4603 245 1966 5052 2242 314
Reply, inherited, unlocked 3520 4028 3549 50 1483 2095 1531 65
Reply, inherited, locked 3514 3788 3547 28 1470 2319 1531 96
Call, PIP to PIP 5364 6878 5618 240 3079 5696 3355 279
Reply, PIP to PIP 5402 6300 5462 89 2898 4109 3019 121
Nest, PIP to PIP 5144 6720 5346 303 1175 3315 1844 446
Call, PIP to propagated 5292 6306 5539 196 3165 6068 3452 308
Reply, PIP to propagated 4558 5318 4679 130 2563 3552 2668 98
Nest, PIP to propagated 6068 7530 6385 243 1838 5088 2243 351
Dispatcher Overhead 58 240 63 19 74 136 74 6
Synthetic Workload 400052 401658 400824 767 845848 848878 847212 411

Table 2: Overheads (in cycles) for Protocol Mechanisms

from a CPI implementing PIP to CPIs implementing both PIP and priority
propagation, respectively, reporting both the call and reply times, as well as
the time to send a nested priority inheritance update (Nest). We compare these
overheads for our various protocols (propagated, inherited for PIP, and fixed
for IPCP and NPCS) to the overhead of a request over the CAmkES built-in
seL4RPCCall connector; while our protocols do induce additional overhead,
the maximum values we measured (a nested call and reply to a CPI with
priority inheritance induced up to about 13,200 cycles of overhead on Intel and
about 9,800 cycles on ARM) equates to less than 6.3 µs on Intel and 14.1 µs
on ARM, which is suitably low for task sets running with periods as small as
10 ms.

Furthermore, benchmarked performance numbers for the seL4 kernel with-
out the CAmkES framework report an average overhead of 383 and 389 cycles,
respectively for IPC call and reply between threads on an Intel x86 64 Sky-
lake platform; and 404 and 409 cycles, respectively on the ARMv8 platform in
64-bit mode [36]. Even with nested priority inheritance, our mean overheads
are only about 14.4× this on the Xeon Gold 6130 and 7.84× this on the Rasp-
berry Pi 3 Model B+. Benchmarked performance numbers from Patina [13]
are only available from an ARM Cortex-A9 processor running on the Zynq-
70000 XC7Z020, and as Patina’s seL4 implementation is not open-sourced,
we cannot perform a direct comparison. However, their maximum reported
overheads for requests to the mutex service were 11,165 cycles (unlocked) and
13,918 cycles (locked); more than the maximum observed overhead on ARM
of our mechanisms, even for nested locking (which Patina does not support).

We additionally measure the overhead induced by priority queues realized
by different heap sizes within our notification manager. For a given heap size n,
we initialize the heap to hold n−1 notification objects with random priorities,
then measure the elapsed cycles to push one more notification object into the
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heap, then pop the notification object with the greatest priority (and, among
those of equal priority, the lowest insertion order). Times are plotted in Fig. 6,
with error bars indicating one standard deviation about the mean. Even the
maximum values observed are upper-bounded by 468 cycles (less than one
fourth of a microsecond) on Intel and 446 cycles (less than three fourths of
a microsecond) on ARM. This (1) demonstrates suitably low overhead of our
notification object heap itself even as the number of elements it holds grows
to 100 (a larger value than many realistic scenarios would experience), and (2)
suggests that the overheads for our priority inheritance protocol are dominated
by the costs of the system calls it uses.
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Fig. 6: Measured Priority Queue Overheads (in cycles)
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6.2 Empirical Evaluation of Synthetic Task Sets

A
PIP

t1

Ct2

B
PIP

t3

t4

D

E

Fig. 7: Task and Component Test System

To facilitate checking the schedulability of actual task sets running in
CAmkES atop seL4 on our selected hardware platforms, we generate synthetic
task sets over a representative topology of interacting components (the one
illustrated in Fig. 7), all running on a single core. In each task set, compo-
nents originating tasks t1 and t2 both request a CPI provided by component
A, while those originating t3 and t4 both request a CPI provided by compo-
nent B. Both A and B encapsulate exclusive execution using PIP. We evaluate
the 4 configurations outlined in Table 3.

CPI C CPI D CPI E

Configuration 1 PIP Propagation PIP
Configuration 2 PIP Propagation Propagation
Configuration 3 IPCP PIP Propagation
Configuration 4 IPCP Propagation PIP

Table 3: Synthetic Taskset CPI Configurations

For each configuration, we generate task sets with utilizations ranging from
0.1 to 1.0. For each utilization value, we generate 10 task sets: we (1) assign
task utilizations according to the UUniSort algorithm [37],11 (2) randomly
select task periods from a set of harmonic values from 10 ms to 1 second,12

then (3) assign task workloads and priorities appropriately, and (4) sort tasks
by increasing workload. Each task is then decomposed into subtasks according
to the component CPIs it traverses: we generate the workloads of each subtask
(and therefore CPI) according to UUniSort (with the sum of the subtask work-
loads equal to the task workload). For each task where a CPI’s workload has

11An alternative to UUniSort, the UUniFast algorithm, runs in linear time, where UUniSort
is quasilinear. However, the elegance and simplicity of UUniSort, combined with our small input
sizes, make it ideal for our offline synthetic task set generation.

12Restricting to a set of harmonic harmonic periods, instead of generating task periods according
to the log-uniform distribution described in [38], allows trials with repeated hyperperiods to be
performed efficiently.
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already been determined (the CPI being shared with another task, for which
it executes subtasks), we use the previously assigned value, and then generate
remaining subtask workloads with UUniSort.

Each task set was run for 10 hyperperiods, with each task releasing up
to 2000 jobs. We implemented periodic tasks by defining a component, the
Dispatcher, which registers a periodic timeout with the CAmkES library’s
TimeServer component. The TimeServer is included among the reusable
components released with CAmkES, though it does not natively support the
Raspberry Pi. We developed a platform-specific header for the Raspberry Pi
3’s BCM2837 firmware, which was realized in only 40 lines of code by hooking
into the seL4 library’s existing drivers for the board’s timer hardware.

An instance of the Dispatcher is created for each task, jobs of which it dis-
patches via the built-in seL4RPCCall connector. Dispatchers are assigned a
priority higher than the three tasks, which ensures that all Dispatcher initial-
ization occurs before any task can execute, and that any task can be preempted
by job release, such that the exact time of release can be recorded. Each Dis-
patcher sets a periodic timer according to its task’s period. When the timer
expires, the Dispatcher (1) issues an instruction to read from the cycle counter,
(2) sends an RPC request to its associated task component, then, when it
receives a reply, (3) reads again from the cycle counter. The worst-case over-
head incurred by the Dispatcher to wait on the timer’s underlying notification
object, as well as the time it takes to determine job completion (both aggre-
gated as the second to last line of Table 2) are subtracted from the elapsed
time. If the resulting value does not exceed the task’s period, we consider the
job to have met its deadline.

Task workloads were synthesized by looping on subsequent floating point
multiplication and addition operations. We measured the execution time, in
cycles, for 106 iterations on the Intel Xeon, and 105 iterations on the slower
Raspberry Pi. Results are summarized in the last line of Table 2. The measured
distributions were relatively narrow, showing a standard deviation of only 767
cycles (under 370 nsec) and 411 cycles (under 600 nsec) on the Raspberry Pi.
The worst-case overhead of the Dispatcher’s communication over the endpoint
with its task component, as well as its two reads from the cycle counter (shown
in the first 3 rows of Table 2) are subtracted from the execution times assigned
to each task, before workload iterations are assigned to individual subtasks.

To enable the testing of multiple task systems in a single run, we encapsu-
late the components that compose each task system, along with an instance of
a System Dispatcher component, into a single hierarchical component, as
illustrated in Fig. 8. We then define a Root Dispatcher component, a sin-
gle instance of which runs at the highest system priority and (1) triggers the
release of each task system in turn via a synchronous RPC request to that task
system’s System Dispatcher. Because of the function call semantics of these
requests, the Root Dispatcher only releases the next task system (9) when the
previous one has completed. The System Dispatcher sends an asynchronous
notification (2-4) to each Dispatcher component in its task system. It runs
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at the highest system priority, ensuring that all notifications are sent before
any of the Dispatcher components can proceed. It then sets itself to the low-
est system priority, so that it cannot interfere with task execution. Once the
Dispatchers have (5) released jobs for 10 hyperperiods, they update deadline
miss statistics in a page of memory shared with the System Dispatcher, then
(6-8) notify it of their completion. Once all tasks have completed, the Sys-
tem Dispatcher prints the miss statistics to the COM interface, then replies to
the Root Dispatcher’s request. Note that, due to memory constraints, we were
limited to configurations of only 5 task systems, requiring multiple separate
configurations to be statically compiled and independently evaluated to cover
all generated task systems.
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Fig. 8: Component Configuration Hierarchy to Sequentially Evaluate Multiple
Task Systems

Perhaps unsurprisingly given the predictable and well-bounded nature of
the task execution times, and of the overheads exhibited by our library, when
running on both hardware platforms, no deadlines were missed for any of our
tested task sets, even those having a utilization of 1.0.

7 Conclusion and Future Work

In this paper, we extended our concurrency framework presented in [7] to sup-
port nested lock acquisition, including nested priority inheritance. The results
of our evaluations demonstrate that our extensions to the CAmkES component
framework can prioritize cross-component control flows effectively. Reentrant
CPIs execute at the priorities of the requesting tasks, while CPIs encapsulat-
ing critical sections use priority-based locking protocols without the need for
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additional atomic operations. With no deadline misses seen even at full CPU
utilization for the task sets we evaluated, our evaluations show that those
extensions allow CAmkES to provide suitable end-to-end timing guarantees
for real-time systems.

As future work, we intend to further extend the concurrency framework
presented in this paper in several ways: prevention of race conditions under
nested locking with round-robin scheduling of threads at the same priority
(e.g., via appropriate priority laddering techniques); expansion of our frame-
work to support end-to-end timing guarantees across asynchronous event
notifications; modification of the CAmkES parser to automatically add prior-
ity and task identifier metadata to RPC request messages, removing the need
for the component programmer to add this parameter to each CPI signature;
and a mechanism supporting transitive closure over request chains, allowing
more robust deadlock detection and alerting to invalid component request
configurations.
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Appendix A Hyperbolic Bound with Blocking
Times

The hyperbolic bound for rate-monotonic (RM) schedulability is given by
Theorem 1 of [28]:

Theorem 1 Let Γ = {τ1, . . . , τn} be a set of n periodic tasks, where each task τi
is characterized by a processor utilization Ui. Then, Γ is schedulable with the RM
algorithm if

n∏
i=1

(Ui + 1) ≤ 2 (A1)

The proof of this theorem in [28] assumes that tasks are ordered by increas-
ing periods; while this does not lose generality in the case that all tasks are
assigned unique priorities, we are interested in the case where some tasks may
have equal periods, and are therefore assigned equal priorities. We begin by
considering schedulability for each task.

Lemma 1.1 In the absence of blocking induced by shared resource constraints, for a
set Γ of periodic tasks, ordered by strictly decreasing priority, a task τi is schedulable
under RM if

i∏
j=1

(Uj + 1) ≤ 2 (A2)

Proof By Theorem 1, the task system Γi = {τ1, . . . , τi} is schedulable if

i∏
j=1

(Uj + 1) ≤ 2 (A3)

This implies that task τi is schedulable. The addition of tasks of lower priority, i.e.
any task τj for which j > i, will not affect the schedulability of τi. Thus, Eqn A3
holds for all τi ∈ Γ. □

Lemma 1.2 In the absence of blocking induced by shared resource constraints, for a
set Γ of periodic tasks, a task τi with priority Pi is schedulable under RM if∏

τj :Pj≥Pi

(Uj + 1) ≤ 2 (A4)

Proof For any τi ∈ Γ for which ∄j : Pi = Pj , i ̸= j, Eqn A2 is equivalent.
Assume that there exists some τi for which other tasks in Γ have equal priority,

i.e., there exists a set Ki = {k : Pi = Pk, i ̸= k}. In the worst case, these tasks will
be released before τi, and thus τi must wait for their completion as if they are higher
priority tasks. In this case, without loss of generality, assume that tasks are ordered
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by non-decreasing priorities such ∀k ∈ Ki, k < i. Then, by this ordering, Eqns A2
and A4 are equivalent. □

The proof of the following theorem follows closely with that of Theorem
16 in [22].

Theorem 2 In the presence of blocking induced by shared resource constraints, a set
Γ of n periodic tasks is schedulable under RM if

∀i, 1 ≤ i ≤ n,
∏

τj :Pj≥Pi,j ̸=i

(
Uj + 1

)(Ci +Bi

Ti
+ 1

)
≤ 2 (A5)

Proof Suppose that the equation is satisfied for all i, 1 ≤ i ≤ n. Then it follows
that for each task τi, Eqn A4 will also be satisfied with n = i and Ci replaced by
Ci∗ = (Ci +Bi). That is, in the absence of blocking, τi will be schedulable even if it
executes for (Ci +Bi) units of time. It follows that task τi, if it executes for only Ci

units of time, can be delayed by Bi units of time and still meet its deadline. Hence,
the theorem follows. □
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