
Vol.:(0123456789)

Real-Time Systems (2021) 57:485–490
https://doi.org/10.1007/s11241-021-09373-4

1 3

Linear‑time admission control for elastic scheduling

Marion Sudvarg1 · Chris Gill1 · Sanjoy Baruah1

Accepted: 14 July 2021 / Published online: 2 August 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature
2021

Abstract
Prior algorithms that have been proposed for the uniprocessor implementation of
systems of elastic tasks have computational complexity quadratic (O(n2)) in the
number of tasks n, for both initialization and for admitting new tasks during run-
time. We present a more efficient implementation in which initialization takes quasi-
linear (O(n log n)), and on-line admission control, linear (O(n)), time.

Keywords Preemptive uniprocessor scheduling · Elastic tasks · Admission control

1 Introduction

The elastic recurrent real-time workload model (Buttazzo et al. 1998, 2002) pro-
vides a framework for dealing with overload by compressing (i.e., reducing) the
effective utilizations of individual tasks until the cumulative utilization falls below
the utilization bound that can be accommodated. Each task �i = (Umin

i
,Umax

i
,Ei) is

characterized by the minimum amount of utilization Umin
i

 that it must be provided
and the maximum amount Umax

i
 that it is able to use, as well as an additional elastic-

ity parameter Ei that “specifies the flexibility of the task to vary its utilization”
(Buttazzo et al. 1998). Given a system � = {�1, �2,… , �n} of n such elastic tasks,
the objective is to assign each task �i a utilization Ui , Umin

i
≤ Ui ≤ Umax

i
 , such that

 * Sanjoy Baruah
 baruah@wustl.edu

 Marion Sudvarg
 msudvarg@wustl.edu

 Chris Gill
 cdgill@wustl.edu

1 Washington University in Saint Louis, Campus Box 1045, Saint Louis, MO 63130, USA

http://orcid.org/0000-0002-4541-3445
http://crossmark.crossref.org/dialog/?doi=10.1007/s11241-021-09373-4&domain=pdf

486 Real-Time Systems (2021) 57:485–490

1 3

(1)
∑n

i=1
Ui is as large as possible but bounded from above by a specified constant Ud

which denotes the maximum cumulative utilization that can be accommodated; and
(2) if Ui > Umin

i
 and Uj > Umin

j
 then Ui and Uj must satisfy the relationship1

A task system � for which such Ui exist for all the tasks is said to be feasible .
An algorithm was presented in Buttazzo et al. (1998) Fig. 3 for determining feasi-
bility and of computing the appropriate values for the utilizations —the Ui’s— of
feasible systems in O(n2) time. Essentially this same algorithm was also repurposed
in Buttazzo et al. (1998) for admission control: for determining whether a new task
seeking to join an already-executing system could be admitted without compromis-
ing feasibility, and if so, recomputing the utilization values for the new task as well
as for all preëxisting ones. Extensions to elastic scheduling that were proposed by
Chantem et al. (2006, 2009) reformulate the problem of determining the utilizations
as a quadratic programming problem. This allows the iterative technique in Buttazzo
et al. (1998) to be applied to a more general class of problems. However, this refor-
mulation continues to have quadratic time-complexity. In this short note we present
a more efficient implementation of the algorithm of Buttazzo et al. (1998) Fig. 3
that determines feasibility and computes the Ui values in O(n log n) time, and does
admission control in O(n) time.

2 Overview of Prior Results

Let � denote a feasible task system with Ei > 0 for all tasks2 �i ∈ � , and consider
the Ui values that bear witness to this feasibility (i.e., each Ui either equals Umin

i
 , or

satisfies Expression 1). The tasks in � may be partitioned into two classes �VARIABLE
(those tasks for which Ui > Umin

i
 , and which can therefore have their utilizations

“varied” –compressed– further if necessary) and �FIXED (those for which Ui = Umin
i

 ;
i.e., their utilizations are now “fixed”). It has been shown (Buttazzo et al. 1998,
Eqn. 8) that for each �i ∈ �VARIABLE

where USUM =

�

∑

�i∈�VARIABLE

Umax
i

�

 and ESUM =

�

∑

�i∈�VARIABLE

Ei

�

 respectively denote
the sum of the Umax

i
 parameters and the Ei parameters of all the tasks in �VARIABLE ,

(1)
(

Umax
i

− Ui

Ei

)

=

(

Umax
j

− Uj

Ej

)

(2)Ui = Umax
i

−

(

USUM −
(

Ud − �
)

ESUM

)

× Ei

2 All tasks �
i
 with E

i
= 0 must have U

i
← U

max

i
 in order to satisfy Expression 1; we assume this is done

in a pre-processing step, and the value of U
d
 updated to reflect the remaining available utilization.

1 For tasks �
i
 having E

i
= 0 , U

i
= U

min

i
 , and therefore the relationship needs not be satisfied.

487

1 3

Real-Time Systems (2021) 57:485–490

and � =

�

∑

�i∈�FIXED

Umin
i

�

 denotes the sum of the Umin
i

 parameters of all the tasks in
�FIXED.3 Given a set of elastic tasks � , the algorithm of Buttazzo et al. (1998) Fig. 3
starts out computing Ui values for the tasks assuming that they are all in �VARIABLE —
i.e., their Ui values are computed according to Expression 2. If any Ui so computed is
observed to be smaller than the corresponding Umin

i
 then that task is moved from

�VARIABLE to �FIXED , the values of USUM , ESUM , and � are updated to reflect this transfer,
and Ui values recomputed for all the tasks. The process terminates if no computed Ui
value is observed to be smaller than the corresponding Umin

i
 . It is easily seen that one

such iteration (i.e., computing Ui values for all the tasks) takes O(n) time. Since an
iteration is followed by another only if some task is moved from �VARIABLE to �FIXED
and there are n tasks, the number of iterations is bounded from above by n. The
overall running time for the algorithm of (Fig. 3, Buttazzo et al. (1998)) is therefore
O(n2) .

3 Observe that � equals the amount of utilization that is allocated to the tasks in �
FIXED

 ; therefore
(U

d
− �) represents the amount available for the tasks in �

VARIABLE
 , and

(

U
SUM

− (U
d
− �)

)

 the amount
by which the cumulative utilizations of these tasks must be reduced from their desired maximums. As
shown in the RHS of Expression 2, under elastic scheduling this reduction is shared amongst the tasks in
proportion to their elasticity parameters: �

i
 ’s share is (E

i
∕E

SUM
).

488 Real-Time Systems (2021) 57:485–490

1 3

3 Our Approach

Let us define an attribute �i for elastic task �i as follows:

We will prove a result (Theorem 1 below) that allows us to conclude that in the algo-
rithm of (Fig. 3, Buttazzo et al. (1998)), tasks may be “moved” from �VARIABLE to
�FIXED in order of their �i parameters.

Assuming that the tasks are indexed in a linked list such that �i ≤ �i+1 for all
i, 1 ≤ i < n , we can then simply make a single pass through all the tasks from �1 to �n ,
identifying, and computing Ui values for, all the ones in �FIXED before any of the ones
in �VARIABLE . With appropriate book-keeping (see the pseudo-code in Algorithm 1)
this can all be done in a single pass in O(n) time. The cost of sorting the tasks in
order to arrange them according to non-increasing �i parameters is O(n log n) , and
hence dominates the overall run-time complexity: determining feasibility and com-
puting the Ui parameters can be done in O(n log n) + O(n) = O(n log n) time.

Admission control – determining whether it is safe to add a new task and rec-
omputing all the Ui parameters if so – requires that the new task be inserted at the
appropriate location in the already sorted list of preëxisting tasks — this can be
achieved in O(n) time. Once this is done, the Ui values can be recomputed in O(n)
time by the pseudo-code in Algorithm 1. Similarly, removing a task from the system
and recomputing the Ui values also takes O(n) time since sorting is not needed.

4 A Technical Result

We now present the main technical result in this short note.

Theorem 1 If �i ∈ �FIXED and �i ≥ �j then �j ∈ �FIXED.

Proof Consider some iteration of the algorithm of (Fig. 3, Buttazzo et al. (1998))
such that �i and �j both start out in �VARIABLE , but �i is determined to belong in �FIXED
in this iteration. This implies that Umin

i
 is at least as large as the value of Ui that is

computed according to Expression 2:

By algebraic simplification of the above, we have

(3)�i

def
=

(

Umax
i

− Umin
i

Ei

)

Umin
i

≥ Umax
i

−

(

USUM −
(

Ud − �
)

ESUM

)

× Ei

(4)

(

USUM −
(

Ud − �
)

ESUM

)

≥

(

Umax
i

− Umin
i

Ei

)

489

1 3

Real-Time Systems (2021) 57:485–490

Note that the LHS of Expression 4 does not contain any term specific to �i and so is
the same for all the tasks in �VARIABLE for this iteration, and that the RHS is simply �i .
Since �i ≥ �j (as per the statement of the theorem), we may conclude by the transi-
tivity of the ≥ operator on the real numbers that the LHS of Expression 4 would also
be ≥ �j ; equivalently, the value of Umin

j
 is no smaller than the value of Uj that is com-

puted according to Expression 2, and as a consequence �j , too, should be moved to
�FIXED . ◻

Funding This study was funded by the National Science Foundation.

References

Buttazzo GC, Lipari G, Abeni L (1998) Elastic task model for adaptive rate control. In: IEEE real-time
systems symposium

Buttazzo GC, Lipari G, Caccamo M, Abeni L (2002) Elastic scheduling for flexible workload manage-
ment. IEEE Trans Comput 51(3):289–302

Chantem T, Hu XS, Lemmon MD (2006) Generalized elastic scheduling. In: IEEE international real-time
systems symposium

Chantem T, Hu XS, Lemmon MD (2009) Generalized elastic scheduling for real-time tasks. IEEE Trans
Comput 58(4):480–495

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

Marion Sudvarg is a PhD student studying computer science at
Washington University in St. Louis. He earned his master’s degree
in computer science from Washington University in St. Louis, with
an emphasis on data mining and machine learning. His current
research interests are in developing robust, adaptable real-time com-
puting systems. Additionally, he works with the ADAPT collabora-
tion, developing real-time data analysis algorithms for multi-mes-
senger astronomy.

490 Real-Time Systems (2021) 57:485–490

1 3

Chris Gill research focuses on assuring properties of cyber-physical,
real-time, and embedded systems in which software complexity,
interactions with unpredictable environments, and heterogeneous
platforms demand novel solutions that are grounded in sound the-
ory. A major goal of his work is to assure that constraints on timing,
memory footprint, fault-tolerance, and other system properties can
be met across heterogeneous applications, operating environments,
and deployment platforms. He has led or contributed to the develop-
ment, evaluation, and open source release of numerous real-time
systems research platforms and artifacts, including: the Kokyu real-
time scheduling and dispatching framework that was used in several
AFRL and DARPA projects and flight demonstrations; the nORB
small-footprint real-time object request broker; the CyberMech plat-
form (collaborative with Purdue University) for parallel Real-Time
Hybrid Simulation; and the RT-Xen real- time virtualization
research platform, from which the RTDS scheduler was transitioned
into the Xen software distribution.

Sanjoy Baruah is the Hugo F. & Ina Champ Urbauer Professor of
Computer Science & Engineering at Washington University in St.
Louis. His research interests and activities are in real-time and
safety-critical system design, scheduling theory, and resource allo-
cation and sharing in distributed computing environments.

	Linear-time admission control for elastic scheduling
	Abstract
	1 Introduction
	2 Overview of Prior Results
	3 Our Approach
	4 A Technical Result
	References

