
MIDI or Die
Oren Bell∗

oren.bell@wustl.edu
Washington University in St. Louis

St. Louis, Missouri, USA

Dane Johnson∗
dane@wustl.edu

Washington University in St. Louis
St. Louis, Missouri, USA

Marion Sudvarg∗
msudvarg@wustl.edu

Washington University in St. Louis
St. Louis, Missouri, USA

ABSTRACT
We present MIDI or Die, a soft real-time platform that converts ana-
log audio into Musical Instrument Digital Interface (MIDI) streams.
The target application is a music rhythm video game played with
real instruments. One or more musical instruments are connected
to USB sound cards on Raspberry Pi devices, which serve as video
game controllers. Each controller performs a Fast Fourier Trans-
form (FFT) in real-time against the digital audio signal, then sends
that data over the local area network to a server. The server can
multiplex several FFT streams in real-time, using a Deep Neural
Network to extract individual tones. Tones are converted to MIDI
notes, then forwarded to a custom video game, which uses the re-
ceived notes to control a simulated guitar fretboard. This provides
visual feedback to players as they play along with a song.

KEYWORDS
fourier transform, midi, note extraction, soft real-time, video game
development

1 INTRODUCTION
Electronic music composition is a discipline at the cutting edge of
both artistic expression and computer science. Digital composers
often find themselves in need of specialty playing and recording
hardware, e.g. MIDI controllers, cables, and hardware or software
synthesizers. Many MIDI controllers are implemented similarly to
electric pianos or organs, consisting of a piano keyboard (often only
a few octaves of keys), knobs, sliders, buttons, and other controllers.
While immensely flexible, the suite of hardware required can be
costly, and constrains the musician to the available media and
interfaces. For example, a musician experienced with playing a
guitar must learn a new operational mode (i.e. playing a piano
keyboard) to successfully record electronic music.

As digital music technology has progressed, music rhythm video
games have entered the market that provide players with the means
to “play” along to popular songs. In the popular Guitar Hero game[8],
the player is a musician put on a stage in front of a virtual audi-
ence. The screen shows a simulated guitar fretboard, and the player
must play the indicated notes in time with a song. The specialized
controllers for these games are drastically simplified and aren’t
interchangeable with an actual instrument.

To address both of these issues, we present MIDI or Die, a novel
approach to controlling digital music software with analog instru-
ments. With minimal hardware, MIDI or Die converts audio signals
from one or more analog instruments into streams of MIDI notes.
∗All authors contributed equally to this research.

CSE 520S SP21, Spring, 2021, Washington University in St. Louis
© 2021 Washington University in St. Louis.

The MIDI stream can then be fed into music composition software
(such as in [13]) or a video game that accepts MIDI notes as control
events. The MIDI or Die package includes a simple video game
that, like Guitar Hero, presents a guitar fretboard on the screen and
prompts players to play along to a song.

Because music composition and performance requires auditory
feedback to the musician (the composer must hear the notes they
are playing, and the player must hear the song with which they
are to play along), MIDI or Die involves time sensitive computa-
tion. Indeed, a trained musician is said to be able to detect audio
latency greater than around 20ms[5, 11]. It is thus necessary that
we employ the techniques of real-time scheduling in order to en-
sure that the musician can comfortably compose and record. To
this end, MIDI or Die has been implemented as a soft real-time
distributed system using a number of design patterns to ensure end-
to-end deadline guarantees. In testing, we are able to demonstrate
predictable latency under the bounds we impose.

The rest of this paper is organized as follows: In Section 2, we
describe the goals and requirements for MIDI or Die and its accom-
panying video game. In Section 3, we describe our design process.
In Section 4, we describe the details of our program implementa-
tion. In Section 5, we present experimental evaluation of MIDI or
Die’s accuracy in extracting individual notes from an audio signal,
and results of several execution time and latency measurements. In
Section 6, we discuss our conclusions, lessons learned, and ideas
for future work.

2 GOALS AND REQUIREMENTS
MIDI or Die, at its core, is a system that allowsmusicians to generate
MIDI notes by playing real musical instruments. The MIDI stream,
then, should be valid input for any MIDI software, including MIDI
transcription (e.g. [13]) and software synthesizers (e.g. Fluidsynth1).

Additionally, it should allow multiple instruments to be played
simultaneously; therefore, MIDI or Die must be implemented as a
distributed system. One or more controllers, acting as client devices,
each receive audio signals from an individual instrument.

The overall design goal of this project leads to certain tim-
ing requirements. Each controller has to sample its audio signal
fast enough to perform frequency analysis (e.g. a Fast Fourier
Transform[7]) at the desired rate. The human ear can hear auditory
latencies greater than 20ms, making this a natural latency target.
However, due to physical constraints, we targeted a 40ms deadline,
as detailed in Section 3.1.3. This defines the real-time requirements
for our system: each controller represents an implicit-deadline peri-
odic task with a period of 40 ms. If a job completes more than 40ms
after it is released (i.e. after an audio sample becomes available),
the latency will become auditory, degrading the performance of the

1https://www.fluidsynth.org/

https://www.fluidsynth.org/

CSE 520S SP21, Spring, 2021, Washington University in St. Louis Oren Bell, Dane Johnson, and Marion Sudvarg

system. Because a single late result does not cause system failure,
these are soft real-time tasks.

We also define a number of functional requirements for our sys-
tem. First, the controller should ideally support any non-percussive
instrument. However, due to time constraints, we focused on sup-
port for the guitar (both acoustic and electric). For the target in-
struments, MIDI or Die should be able to extract notes and simple
chords from the audio signal. The goal is to support chords having
notes as high as a 𝐶6, which is around 1kHz, and represents the
highest note playable on many guitars.

Second, besides supporting existing MIDI software, MIDI or Die
also includes a music rhythm video game. This game should allow
players to play along with real songs, providing visual feedback
according to how well the player matches the given notes.

3 DESIGN
MIDI or Die has been designed in a modular fashion using object-
oriented techniques to ensure that functionality could be easily
swapped out, and different techniques compared. The server and
controller use concurrent design patterns to provide a platform for
this modularity, and to guarantee robust execution with predictable
timing.

3.1 Software Components
The primary software components of our system include: (1) a
sound server library to interface with the audio input driver, (2) an
FFT module, (3) software to extract individual tones or chords from
a DFT, and (4) tone and chord to MIDI note conversion.

3.1.1 Sound Server Library. MIDI or Die aims to support a variety
of musical instruments and a wide range of hardware devices (e.g.
analog audio outputs, USB-based analog-to-digital converters and
preamplifiers, microphones, etc.). To this end, MIDI or Die uses the
PulseAudio2 sound server library to interface with common Linux
audio drivers, allowing it to sample audio data coming in via any
supported input device.

PulseAudio provides a hook in the form of a callback function
signature. The callback function we implement collects audio sam-
ples at our hardware’s recommended rate of 44.1kHz, then passes
sampled audio data to the FFT module.

3.1.2 FFT. To ascertain the notes being played, the audio signal
is passed through an FFT algorithm, generating a Discrete Fourier
Transform (DFT) representation of our audio. These acronyms –
FFT and DFT – will be used interchangeably.

The FFT algorithm is provided by the FFTW3 library[4]. The
audio segment is preprocessed through application of a Hamming
window[3], then the FFT is computed. The result is an array of
complex numbers containing phase information.

The FFT module then determines the magnitude of each complex
value. The resulting real-valued array is a histogram of amplitude
values over the frequency domain, with each bin representing a
25Hz range. Amplitude values are then expressed in decibels.

Due to the hardware sampling rate, the resulting DFT histogram
will incorporate frequencies as high as 22050Hz. Because we only

2https://www.freedesktop.org/wiki/Software/PulseAudio/

Figure 1: Audio of G-D interval

Figure 2: Frequency domain representation, in decibels

target notes up to a 𝐶6, we then crop the histogram to 2kHz, ap-
proximately at 𝐶6’s second harmonic.

See Figs 1 and 2 for an end-to-end visualization of this process.

3.1.3 AI Model for Tone and Chord Extraction. Given an array
of DFT values, a naïve way to extract the note being played is
to find the most prominent frequency peak. But this runs into a
fundamental problem of mathematics. The finest resolution of the
frequency transform is the reciprocal of the duration of the audio
window used to calculate it[7]:.

Δ𝑡𝑁 = 1/Δ𝑓 (1)
Here, 𝛿𝑡 and 𝛿𝑓 are the width of a sample, in time and frequency

domain, respectively; and N is the number of samples, which is
identical for a signal and its frequency transform.

Incidentally, the two lowest notes on the guitar are E2 and F2,
which are 5Hz apart. In order to distinguish these, the audio sam-
pling window must be at least 200ms wide, an unacceptable delay

2

https://www.freedesktop.org/wiki/Software/PulseAudio/

MIDI or Die CSE 520S SP21, Spring, 2021, Washington University in St. Louis

for audio applications. Since this project has a video game aspect,
and the refresh rate of monitors would constrain us anyways, we
compromise on a 40ms window.

To target a 40ms window, corresponding to a 25Hz resolution,
we modified our approach to DFT analysis. Instead of just searching
for fundamental frequencies, we consider the entire DFT, including
overtones. The 6𝑡ℎ harmonics of 𝐸2 and 𝐹2 are 30Hz apart, enough
to distinguish with a 40ms audio window.

We implemented a Deep Neural Network in TensorFlow[1] to
perform the DFT analysis and infer the notes played. To train the
network, we wrote a script to generate thousands of different guitar
chords, record them, and store the resulting DFT data with the cor-
responding notes as labels. Each chord was generated using dozens
of unique sound fonts. This approach resulted in a sufficiently large
quantity of data to allow for robust training of the network.

3.1.4 MIDI Note Conversion. Notes extracted from DFT data are
sent to the target MIDI application as MIDI messages. We focus on
sending note-on and note-off events. To generate these events, the
server maintains parameters in memory that track the most recent
notes that were played. When a new note is detected, it publishes a
corresponding “Note On” event to the MIDI stream. When a note is
no longer being played, it generates a “Note Off” event. No action
is taken for detected notes that were also present in the previous
DFT. Note that, for now, the server does not infer volume; any notes
detected are sent with a constant value for velocity.

3.2 Network Architecture
MIDI or Die also provides a custom library, built on top of BSD
stream sockets, for network communication between the client
and server. The library implements Server and Client classes, both
deriving from a base Socket class. The Server implements the Accep-
tor as part of the Acceptor-Connector design pattern[10], having
a dedicated thread to listen for client connections on the socket.
It constructs an object of the Connection class for each client it
accepts. This class implements the Active Object pattern[10], us-
ing a dedicated thread per connection to read and write across
the socket. The Connector’s thread function is a parameter of the
Socket constructor. This allows the library to be highly flexible: cus-
tom communication protocols and functionality can be developed
separately of the socket communication itself, then simply passed
to a single Server object which then handles all communication.

The Client class, unlike the server, only maintains a single Con-
nection object, which is constructed upon successful connection
to the server. This allows all socket communication on the client
side to be handled in its own thread. If the Client object cannot
connect to the Server, it throws an exception, with a unique type for
each cause of failure. This allows the library user to set up custom
exception handling. In our case, for example, the client attempts
to reconnect every second if there is no listening Server. For other
errors where an attempt to reconnect would be futile (e.g. an error
in the socket subsystem, an invalid IP address, etc.), the program is
terminated gracefully with an appropriate error message.

The network architecture is illustrated in Figs 3 and 4.

Figure 3: First, the Client establishes a connection with the
Server’s Acceptor thread.

Figure 4: Once established both Client and Server create
dedicated Connection Active Objects to handle bidirectional
socket communication.

4 IMPLEMENTATION
MIDI or Die is implemented as a distributed soft real-time system
with two basic components: one or more client devices acting as
video game or MIDI controllers, and a server hosting the target
MIDI application or video game.

4.1 The Controller
The client device acts as both a video game and MIDI controller.
Its target platform is meant to be lightweight, inexpensive, and
headless. We target the Raspberry Pi platform, since it provides
an inexpensive, easily accessible multicore system on a chip. Ad-
ditionally, the Raspberry Pi OS has the necessary audio drivers
to run many off-the-shelf plug and play USB audio adapters. As
implemented, the controller runs the sound server library and FFT
module, then sends DFT data over a local area network (LAN) to
the server.

The controller constructs an object that encapsulates the FFT
functionality and implements the callback function to PulseAudio.
It also constructs a Client object to connect to the server. The
function passed to the Client first waits for the server to be ready
to receive data (indicated by a single byte sent from the server to
the controller), then sends DFT data to the server every 40ms.

3

CSE 520S SP21, Spring, 2021, Washington University in St. Louis Oren Bell, Dane Johnson, and Marion Sudvarg

Figure 5: Controller Architecture

Because DFT data is processed by the main thread of execution,
then sent by the socket thread, we have to ensure that data is
shared between the two threads in a consistent state. As such, we
implement a custom Shared_Array class, which creates a buffer for
which reads andwrites are guaranteed to be consistent. Consistency
is maintained in two ways, allowing for flexibility of use: the act of
access can be locked by a mutex, using the C++ Standard Library
mutex object. It can also be maintained using a mechanism similar
to Linux’s seqlock[6].

The described controller architecture is illustrated in Fig 5.

4.2 The Server
The server requires more computational power than the controller,
and is intended to be installed on a Debian-based desktop or server
machine with the necessary peripherals (keyboard, mouse, monitor,
speakers) to interact with the target MIDI application. It receives
streams of DFT data from one or more controllers on the LAN,
performs tone and chord extraction for each one, and converts the
extracted tones to MIDI notes. MIDI notes are then forwarded to
the target MIDI application or video game, which runs on the same
machine.

The server software constructs a Server object to accept new
client connections. Each resulting Connection object thread func-
tion executes a loop. Every 40 ms, it reads DFT data from the socket
into a Desynthesizer object that encapsulates the DNN for tone and
chord extraction and the MIDI note conversion. The Desynthesizer
then sends messages to a MIDI port specified as a command-line
argument. On a system running one or more MIDI applications,
each application binds to a unique port number.

If multiple controllers are connected, notes from each connection
will be sent to a unique MIDI channel number. This is consistent
with the semantics of traditional MIDI recording. To allow for au-
tomatic channel selection, we implement two classes: a Channel
and a ChannelBroker. As new controllers connect, the Channel-
Broker assigns each one a Channel object corresponding to the
next free MIDI channel. MIDI provides 16 channels, and when no
more channels are available, subsequent controllers fail to connect.
The ChannelBroker uses appropriate locking semantics for thread
safety.

4.3 MIDI or Die (The Game)
MIDI or Die comes with a custom music rhythm game, aptly named
“MIDI or Die (The Game).” The game was implemented in the Godot
game engine.3 We modified the source code to use the RTMidi
3https://godotengine.org/

Figure 6: Server Architecture

Figure 7: MIDI or Die (The Game)

library as an input mechanism. We added a C++ module to read
Midi input from files exported by MuseScore, and we create physics
objects in time with the tempo of the Midi file. Midi input creates
a collision area which causes the physics objects to explode when
they come in contact with it, and then removes the area after a
third of a second.

5 EVALUATION
To evaluate our success in meeting the design goals of MIDI or
Die, we tested both the execution time and end-to-end latency of
the system, as well as the accuracy of our AI model at correctly
identifying notes.

5.1 Execution Time and Latency
We evaluated execution times for different subtasks of our program,
as well as testing end-to-end latency and polling jitter. For these
tests, we used a single Raspberry Pi 3 Model B+, running the Rasp-
bian GNU/Linux 10 operating system, as a controller. The server
was installed on a system with 2 Intel Xeon Gold 6130 16-core
CPUs running at 2.10GHz with Hyperthreading enabled and 32GB

4

https://godotengine.org/

MIDI or Die CSE 520S SP21, Spring, 2021, Washington University in St. Louis

of RAM. Both the controller and server were connected to a gigabit
Ethernet switch. All timing measurements were taken using the
C++ Standard Library’s High Resolution Clock.

5.1.1 Execution Times. We measured the time it took for the con-
troller to perform an FFT for 500 runs of the algorithm. Results
are illustrated in Fig 8. Average execution time was 558𝜇s with a
standard deviation of 57𝜇s and a maximum execution time of 731𝜇s.
Compared to our 40ms deadline, this is very fast. It demonstrates
that even the Raspberry Pi platform has sufficient computational
power to perform an FFT well within our real-time constraints.

On the server, we measured the time to run the DNN to extract
notes and convert them to MIDI. For 100 trials, we observed an
average execution time of 569𝜇s with a standard deviation of 111𝜇s
and a maximum execution time of 1.44ms. Results are illustrated in
Fig 9. Even with the relatively high standard deviation, we expect
this to remain well under the 40ms constraint, even if multiple
controllers are connected or running on a more constrained host
machine.

We also modified the Godot game engine to allow our game to
receive custom MIDI events with timing information. This allowed
us to measure the elapsed time between our server sending a MIDI
note to the game, and the game receiving and processing the note.
For 25 trials4, we observed an average latency of 214𝜇s with a
standard deviation of 39𝜇s and a maximum of 598𝜇s. Results are
illustrated in Fig 10. Again, these times are well within our deadline.

5.1.2 End-to-End Latency. We next measured end-to-end latency
fromwhen our controller receives a 40ms audio sample fromPulseAu-
dio, to when the correspondingMIDI note is sent to the game, taking
into account the network latency. To do so, we modified the server
to send a single byte back to the controller after it sends each MIDI
event to the game. While we expect this to be an inflated measure-
ment (since it includes the transit time of this status byte, which is
not otherwise sent by the application), we do not expect the transit
time of a single byte on the network to take long (indeed, ICMP
packet roundtrip times were measured to be consistently under
1ms between the controller and server).

The results were surprising: for 500 jobs, roundtrip latency mea-
surements started at only 664𝜇s, well under our 40ms deadline.
However, they grew in a linear fashion to around 18.5ms for the
last measurement. Results are illustrated in Fig 11, which plots
roundtrip latency measurements against the corresponding job
number to illustrate the growth. This means that roundtrip latency
increased by about 35.8𝜇s. We assume, given this trend, that we
will begin to miss the 40𝜇s after around 1100 polling periods (or
45 seconds of playing time). We discuss possible reasons for this
phenomenon in Section 6.

5.1.3 Polling Jitter. The controller is designed to send DFT data to
the server every 40ms. The server, meanwhile, must receive the data
and process it with the same polling period. For both the controller
and server, we measured the elapsed time between 200 subsequent
polling periods. The results of these tests are illustrated in Figs 12
and 13.

4This number comes from real gameplay, and corresponds to the number of notes
actually detected and sent.

Figure 8: FFT Execution Times

Figure 9: DNN Note Extraction and MIDI Conversion Execu-
tion Times

Figure 10: MIDI Note to Game Latencies

For the controller, the mean polling period was 40.12ms with
a standard deviation of 0.11ms. For the server, the mean polling
period was 40.11ms with a standard deviation of 0.20ms. While
these values are not far from our target 40ms, they will begin to
introduce skew against the desired period, and might contribute to
the increase in round-trip latency that we observed.

5

CSE 520S SP21, Spring, 2021, Washington University in St. Louis Oren Bell, Dane Johnson, and Marion Sudvarg

Figure 11: Rountrip Latency Measurements. Notice that
these are plotted against job number to illustrate an increas-
ing trend.

Figure 12: Controller Polling Times

Figure 13: Server Polling Times

5.2 DNN Note Extraction Accuracy
The AI model, which was created to discern low notes, is ironically
bad at identifying low notes.Whenwe record silence, the sub-100Hz
range of sound will appear 10-20dB louder than other frequencies,
due to ambiance conforming to the curve of pink noise[2].

Incidentally, the AI model uses layer normalization. In layman’s
terms, this means that the AI looks at the shape of the input rather
than the absolute values. This result is that that silence at -40dB will
be interpreted similarly to E2 playing at 110dB, even though it’s
1 quadrillion times louder. The result is that after training, the AI
model would discard most notes played on the 6𝑡ℎ string as silence.

Potential fixes for this issue would likely be representing our
FFT in linear terms, rather than decibels.

Below is the result of testing our AI model. False positive rate is
the percentage of incorrect notes detected out of all notes detected
(smaller is better). Detection rate is notes that were detected out of
all correct notes expected (larger is better).

False Positive Rate 15%
Detection Rate 73%

6 CONCLUSIONS AND FUTUREWORK
This paper presents MIDI or Die, a platform for using real musical
instruments as MIDI controllers. Its goal was to support a broad
range of instruments, and to guarantee sufficiently low end-to-end
latency to provide players with a smooth experience. While it meets
several of its goals, MIDI or Die is still a work in progress.

MIDI or Die’s deep learning model supports both electric and
acoustic guitars, but has not yet been adequately trained to support
a broader range of instruments (e.g. pianos, synthesizers, etc.). Ad-
ditionally, there is still room for improvement in both the model,
and the corpus of training data provided to it.

We also identified a timing issue that skews the polling periods
used in MIDI or Die, causing round-trip latencies to increase over
time. The way we currently enforce polling is with a custom class
that forces a loop to delay a specified duration of time from when
it begin its current iteration, to when it begins its next iteration.
The way this class is implemented could be improved: the delay
enforcement does not take into account context-switching and loop
branching times. We would need to improve this for a production
release.

Given that this project is an interdisciplinary work of software
engineering and musical composition, it is lacking the critical per-
spective of a trained musician. The authors, while capable, are only
hobbyists. In the future, we would like to include a trained musician
and music producer, who would be able to bridge the gap between
the technical and artistic aspects of the project and the video game.

In a similar vein, the authors are only hobbyist game developers,
and including artists from that sphere could much improve the
aesthetic and entertainment value of “MIDI or Die (The Game).” We
would also like to expand “MIDI or Die (The Game)” to support
multiple players, since the MIDI or Die server software supports
multiple controllers. In doing so, we would need to perform more
timing measurements to determine the maximum number of con-
trollers supported before execution times exceed the 40ms deadline.

6

MIDI or Die CSE 520S SP21, Spring, 2021, Washington University in St. Louis

ACKNOWLEDGMENTS
Authors would like to thank Phil Ring for his insight into the acous-
tics of the guitar.

REFERENCES
[1] M. Abadi, et al. “TensorFlow: A system for large-scale machine learning,” 12th
USENIX Symposium on Operating Systems Design and Implementation (OSDI 16),
USENIX Association (2016), pp. 265-283.

[2] P. Bak, C. Tang, K. Wiesenfeld (1987). “Self-Organized Criticality: An Explanation
of 1/ƒ Noise,” in Physical Review Letters. 59 (4): pp. 381–384.

[3] E. Douglas. Handbook of Digital Signal Processing. Academic Press, Cambridge,
MA, USA, 1987. ISBN 978-0-08-050780-4.

[4] M. Frigo and S. G. Johnson. “The Design and Implementation of FFTW3,”
in textitProceedings of the IEEE, vol. 93, no. 2, pp. 216-231, Feb. 2005, doi:
10.1109/JPROC.2004.840301.

[5] H. Haas. “The Influence of a Single Echo on the Audibility of Speech,” in J. Audio
Eng. Soc., vol. 20, no. 2, pp. 146-159, (1972 March.).

[6] C. Lameter. “Effective synchronization on Linux/NUMA systems.” Gelato Confer-
ence, 2005.

[7] A. Oppenheim, Signals and Systems, Second Edition. Prentice Hall, Hoboken, NJ,
USA, 1997. ISBN 0-13-814757-4.

[8] C. Roper. “Guitar Hero,” IGN.Written Nov 2, 2005. Updated Nov 24, 2018. Retrieved
May 7, 2021 from https://www.ign.com/articles/2005/11/03/guitar-hero

[9] G. Scavone and P.R. Cook (2005). “RtMidi, RtAudio, and a Synthesis ToolKit (STK)
Update,” In Proceedings of the 2005 International Computer Music Conference, Barcelona,
Spain, pp. 327-330.

[10] D.C. Schmidt, M. Stal, H. Rohnert, and F. Buschmann. Pattern-Oriented Software
Architecture: Patterns for Concurrent and Networked Objects, Volume 2. Wiley & Sons,
New York, 2000.

[11] N. Schuett. “The effects of latency on ensemble performance,” Doctoral Thesis,
2002, Stanford University.

[12] “Standard MIDI-File Format Spec. 1.1.” The International MIDI Association, 1999.
[13] M. Watson. “MuseScore,” in Journal of the Musical Arts in Africa, 15:1-2, pp.
143-147, 2018, DOI: 10.2989/18121004.2018.1534342

A COMPILING AND RUNNING SUBMITTED
CODE

A.1 Platform Requirements
The system was built and tested using Ubuntu for the server ma-
chine, and a Raspberry Pi running Raspbian for the controller. We
suggest testing it on only Debian-based systems, to maintain com-
patibility with the TensorFlow libraries.

A.2 Retrieving MIDI or Die
MIDI or Die is available at https://github.com/msudvarg/MIDIOrDie.
To retreive it, run the following commands:

git clone https://github.com/msudvarg/MIDIOrDie
cd MIDIOrDie
git submodule init
git submodule update

A.3 Compiling Controller and Dependencies
The controller depends on PortAudio and the FFTW3 library. Install
them and then build the repo with:

sudo apt install -y build-essential cmake \
libfftw3-dev portaudio19-dev

mkdir build && cd build
cmake ..
make

A.4 Compiling Server and Dependencies
The server also requires PortAudio, in addition to several Tensor-
Flow libraries. MIDI libraries are bundled with the repo. If you built
the controller on a Pi, switch to your server machine. Then install
these dependencies with:

Install portaudio and co again,
if you're running on a different machine
sudo apt install -y build-essential cmake \

libfftw3-dev librtmidi-dev portaudio19-dev
mkdir build && cd build

Install prereqs and bazel
sudo apt-get install -y cmake curl g++-7 git python3-dev \

python3-numpy sudo wget libprotobuf-lite10 \
libprotobuf10 libprotoc-dev

curl -fsSL https://bazel.build/bazel-release.pub.gpg | \
gpg --dearmor > bazel.gpg

sudo mv bazel.gpg /etc/apt/trusted.gpg.d/
echo "deb [arch=amd64] \

https://storage.googleapis.com/bazel-apt \
stable jdk1.8" | sudo tee \
/etc/apt/sources.list.d/bazel.list

sudo apt-get update
sudo apt-get install -y bazel-3.1.0
sudo ln -s /usr/bin/bazel-3.1.0 /usr/bin/bazel

Clone a helpful repo from FloopCZ to install TF_cc
git clone https://github.com/FloopCZ/tensorflow_cc.git
cd tensorflow_cc/tensorflow_cc
mkdir build && cd build
cmake -DALLOW_CUDA=off ..
make
sudo make install

With all those dependencies out of the way, build the repo with
a flag to trigger building of the server

cd path/to/MIDIOrDie/
mkdir build
cd build
cmake -DBUILD_SERVER=true ..
make

A.5 Running
The order of running is: host application, server, then controller.
First start the host application (MuseScore, our MidiOrDie game,
etc).

Run the server by navigating to the build directory and executing

./server -p 1 -a

This will start the server and publish to MIDI port 1. The server
lists all available MIDI ports on launch, so if port 1 is not correct,
simply kill the server with Ctrl+C and modify the argument given
to -p.

[TODO: Detail all argument parameters?]
Next, run the controller. If it’s running on a separate Pi, use:

./controller -f -i 192.168.x.x

7

https://github.com/msudvarg/MIDIOrDie

CSE 520S SP21, Spring, 2021, Washington University in St. Louis Oren Bell, Dane Johnson, and Marion Sudvarg

Replacing 192.168.x.x with the IP address of your host machine.
If the controller is also running on the host machine, omit the -i
flag entirely, as it’ll default to the local address.

[TODO: Detail all argument parameters?]

A.6 Compiling and Running “MIDI or Die (The
Game)”

“MIDI or Die (The Game)” runs on a modified version of the Godot
game engine. This version must be built from source, available at
https://github.com/dane-johnson/godot/tree/rtmidi. Instructions

for compilation are available at https://docs.godotengine.org/en/
stable/development/compiling/compiling_for_x11.html.

Furthermore, the game uses a C++ extension library that must
also be compiled by hand. SCons must be run in the
midiordiethegame/MidiCPP/godot-cpp directory, and thenMake
in the midiordiethegame/MidiCPP directory.

Once the game is loaded in the engine, it can be run simply
by pressing the “play” button, the in-game console is loaded by
pressing the “~” key, loading a song (Meglovania and Layla are
shipped) is done with the “load <song>” command, and playback
begins with the “play” command.

8

https://github.com/dane-johnson/godot/tree/rtmidi
https://docs.godotengine.org/en/stable/development/compiling/compiling_for_x11.html
https://docs.godotengine.org/en/stable/development/compiling/compiling_for_x11.html

	Abstract
	1 Introduction
	2 Goals and Requirements
	3 Design
	3.1 Software Components
	3.2 Network Architecture

	4 Implementation
	4.1 The Controller
	4.2 The Server
	4.3 MIDI or Die (The Game)

	5 Evaluation
	5.1 Execution Time and Latency
	5.2 DNN Note Extraction Accuracy

	6 Conclusions and Future Work
	Acknowledgments
	References
	A Compiling and Running Submitted Code
	A.1 Platform Requirements
	A.2 Retrieving MIDI or Die
	A.3 Compiling Controller and Dependencies
	A.4 Compiling Server and Dependencies
	A.5 Running
	A.6 Compiling and Running ``MIDI or Die (The Game)''

